Data Structures (CS 1520)
 Homework #5
 Due: 10/27/12 (Sat.) at 11:59 PM

This assignment has several parts -- a comparison of dictionary/map ADTs (section 5.2.3.3 of the text) and a concordance-production application using the dictionary ADTs. A Webster’s dictionary definition of concordance is: “an alphabetical list of the main words in a work.” In addition to the main words, I want you to keep track of all the line numbers where these main words occur.

WORD & LINE CONCORDANCE APPLICATION

The goal of this assignment is to process a textual, data file (hw5data.txt) to generate a word concordance with line numbers for each main word. A dictionary ADT is perfect to store the word concordance with the word being the dictionary key and a list of its line numbers being the associated value with the key. Since the concordance should only keep track of the “main” words, there will actually be a second stop-words file (stop_words.txt). The stop-words file will contain a list of stop words (e.g., “a”, “the”, etc.) -- these words will not be included in the concordance even if they do appear in the data file. Sample files might be:

[image: image1.wmf]a

This is a sample data (text) file to

bigger: 4

about

by

can

do

i

in

of

on

the

is

it

Sample output file

Notes:

Sample

stop_words.txt

 file

Sample

hw5data.txt

 file

this

be processed by your word-concordance program.

The real data file is much bigger.

to

was

concordance: 2

data: 1 4

file: 1 4

much: 4

processed: 2

program: 2

real: 4

sample: 1

text: 1

word: 2

your: 2

be

1) Words are defined to be sequences of letters delimited by any non-letter.

(e.g., white space, punctuation, parentheses, dashes, double quotes, etc.)

2) There is to be no distinction made between upper and lower case letters.

(e.g., "CAT" is the same word as "cat")

(e.g., line 3 above is blank)

3) Blank lines are to be counted in the line numbering.

The general algorithm for the word-concordance program is:

1) Read the stop_words.txt file into a dictionary containing only stop words, called stopWordDict.

 (WARNING: Strip the newline (‘\n’) character from the end of the stop word before adding it to stopWordDict)

2) Process the hw5data.txt file one line at a time to build the word-concordance dictionary (called

 wordConcordanceDict) containing “main” words for the keys with a list of their associated line numbers as

 their values. The main loop is something like:

lineCounter = 1

for each line in the data file do

wordConcordanceDict = processLine(lineCounter, line, ...)

lineCounter += 1

3) Traverse the wordConcordanceDict alphabetically by key to generate a text file containing the concordance

 words printed out in alphabetical order along with their corresponding line numbers.

The general algorithm for the processLine (lineCounter, line, ...) function is:

wordList = createWordList(line)

for each word in the workList do

if the word is not in the stopWordDict then

look up the line-#-list value associated with the word in the wordConcordanceDict

add the lineCounter to the end of the line-#-list

else

add the word with an associated [lineCounter] list value to the wordConcordanceDict
(Note: I strongly suggested that the logic for reading words and assigning line numbers to them be developed and tested separately from other aspects of the program. This could be accomplished by reading a sample file and printing out the words recognized with their corresponding line numbers without any other word processing.)

DICTIONARY ADT COMPARISON
We have 3 dictionary ADT implementations from lab 7: ListDict, ChainingDict, and OpenAddrHashDict. None of these should need to be modified. You just use their dictionary operations.

Time your word-concordance application using all three dictionary ADT implementations to complete the following table: (FYI, there are about 2,700 stop words and less than 200 non-stop words)

	Dictionary ADT Implementation Used
	Word-concordance Program Execution Time (seconds)

	ListDict

	

	ChainingDict

	

	OpenAddrHashDict with linear probing

(hash table sizes 4096)
	

	OpenAddrHashDict with quadratic probing

(hash table sizes 4096)
	

DATA FILES - Download hw5.zip file at http://www.cs.uni.edu/~fienup/cs1520f12/homework/ it contains:

Ÿ ListDict in the file list_dictionary.py, ChainingDict in the file chaining_dictionary.py and OpenAddrHashDict in the file open_addr_hash_dictionary.py
Ÿ the stop words in the file stop_words.txt

Ÿ the data file to be processed by your word-concordance program in the file hw5data.txt
EXTRA CREDIT POSSIBILITIES:

1) Use a better definition of a word that allows words to contain an apostrophe or single hyphens. For example,

 “it’s” and “end-of-line-characters” should be considered words.

2) Modify OpenAddrHashDict dictionary ADT to allow double hashing as a rehashing technique.

3) Modify OpenAddrHashDict dictionary ADT to allow the capacity of hash table to double if the hash table load factor exceeds 0.8.

SUBMISSION
Submit ALL necessary files to run your concordance-production application using the dictionary ADTs as a single zipped file (called hw5.zip) electronically at
https://www.cs.uni.edu/~schafer/submit/which_course.cgi
Include in your hw5.zip file a "results" file (.txt, .doc, .rtf, .odt, etc.) containing the completed table above, i.e., timing results for your word-concordance programming using the various dictionary ADTs.
