Objective: To gain experience with backtracking via recursion, and writing a dynamic programming solution

To start the lab: Download and unzip the file at: www.cs.uni.edu/~fienup/cs1520f12/labs/lab6.zip

Part A: The coin_no_globals.py file contains the recursive backtracking algorithm discussed in lecture to implement the “coin-change” problem: “Given a set of coin types and an amount of change to be returned, it determines the fewest number of coins for this amount of change.”

a) Run the coin_no_globals.py program with the following input:

Change Amount�
Order of Coin Types�
Run-Time (seconds)�
Number of Backtracking Nodes�
�
29�
1 5 10 12 25 50�
�
�
�
29�
50 25 12 10 5 1�
�
�
�

b) Explain why the algorithm performs better for the descending order of coins.

c) Draw the complete search-space recursion tree for 29 cents change and coin types: 50 25 12 10 5 1

d) Each node of the search-space (recursive-call) tree maintains the state of a partial solution. In general the partial solution state consists of potentially large arrays that change little between parent and child. For example, the current coin_no_globals.py program copies the numberOfEachCoinType array and updates one spot:

 else:

 # call child with updated state information

 smallerChangeAmtNumberOfEachCoinType = [] + numberOfEachCoinType

 smallerChangeAmtNumberOfEachCoinType[index] += 1

To avoid having to make multiple copies of the numberOfEachCoinType array, a reference to a single “global” array can be maintained which is updated before we go down to the child (via a recursive call) and undone when we backtrack to the parent. Modify the coin_no_globals.py program to include this improvement.

e) Uncomment the print statement which is the next to last line of solveCoinChange. Explain the resulting output of this print statement.

After you have completed part A, raise your hand and explain your results.

�
Part B. The coinDynPgmming.py file contains a partial solution to the dynamic programming coin-change problem. Your job is to complete the dynamic programming solution by having it calculate the fewestCoins and bestFirstCoin arrays.

Recall that the dynamic programming algorithm is:

I. Fills an array fewestCoins from 0 to the amount of change. An element of fewestCoins stores the fewest number of coins necessary for the amount of change corresponding to its index value.

For 29-cents using the set of coin types {1, 5, 10, 12, 25, 50}, the dynamic programming algorithm would have previously calculated the fewestCoins for the change amounts of 0, 1, 2, ..., up to 28 cents.

II. If we record the best, first coin to return for each change amount (found in the “minimum” calculation) in a list bestFirstCoin, then we can easily recover the actual coin types to return.

�

After you have completed your dynamic programming solution and debugged it, raise your hand and demonstrate your code.

Data Structures (CS 1520) 	Lab 6 	Name:_________________

		Lab 6 - �page * MERGEFORMAT�2�

