Data Structures (CS 1520)
Lab 8
Name:___________________________

Objectives: You will gain experience:

Ÿ get a feel for simple sorts: selection, bubble, and insertion sorts

Ÿ get a feel for advanced sorts: heap, quick, and merge sorts

To start the lab: Download and unzip the file: http://www.cs.uni.edu/~fienup/cs1520f12/labs/lab8.zip
The lab8.zip file you downloaded and extracted contains the following sorting algorithms which all sort in ascending order (i.e., from smallest to largest):

Ÿ bubbleSort.py - bubble sort code which does check if it can stop early

Ÿ bubbleSortB.py - bubble sort code which stops early if no swapping is needed during a scan of the unsorted part

Ÿ insertionSort.py - the insertion sort

Ÿ selectionSort.py - the selection sort code we developed in class

Each program runs the sorting algorithm several time with different initial orderings of 10,000 list items. The initial orderings of items are: descending order, ascending order, random order, and random order again to check for consistence. Complete the following timings by running the each program.

	Timings of Sorting Algorithms on 10,000 items (seconds)

	Type of sorting algorithm
	Initial Ordering of Items

	
	Descending
	Ascending
	Random order 1
	Random order 2

	bubbleSort.py
	
	
	
	

	bubbleSortB.py
	
	
	
	

	insertionSort.py
	
	
	
	

	selectionSort.py
	
	
	
	

Study the code and answer the following questions about the sorting algorithms:

a) Why does the bubbleSort algorithm take less time on the ascending ordered list than the descending ordered list?

b) Why does the bubbleSortB algorithm take A LOT less time on the ascending ordered list than the descending ordered list?

c) Why does the insertionSort algorithm take A LOT less time on the ascending ordered list than the descending ordered list?

d) Why does the insertionSort algorithm take less time on the descending ordered list than the bubbleSort algorithm on the descending ordered list?

e) Why does the selectionSort algorithm take less time on the descending ordered list than the insertionSort algorithm on the descending ordered list?

After you have answered the above questions, raise your hand and explain your answers.
Part B:

a) Complete the heap sort function in lab8/heapSort.py which contains the template for the heap sort algorithm discussed yesterday in class. Recall the steps of the algorithm:

[image: image1.wmf]1. Create an empty heap

Steps:

2. Insert all n list items into heap

3. delMin heap items back to list in sorted order

myList sorted list with n items

myList unsorted list with n items

heap with

n items

b) Time the heap sorting algorithm using lab8/timeHeapSort.py on 100,000 items, 200,000 items, and 400,000 items.

	# Items
	Your Heap Sort Timing

	100,000
	

	200,000
	

	400,000
	

c) Explain the O() for your heap sort algorithm?

d) The general idea merge sort is as follows. Assume “n” items to sort.

Ÿ Split the unsorted part in half to get two smaller sorting problems of about n/2

Ÿ Solve both smaller problem recursively using merge sort

Ÿ “Merge” the solution to the smaller problems together to solve the original sorting problem of size n

[image: image2.wmf]10

10

10

10

20

20

20

20

35

35

35

35

40

40

40

40

45

45

45

45

60

60

60

60

25

25

25

25

50

50

50

50

Unsorted Part

 Sorted Part

Unsorted Left Half

 Sorted Left Half

Unsorted Right Half

 Sorted Right Half

0

0

0

0

0

0

4

4

1

1

1

1

1

1

5

5

2

2

2

2

2

2

6

6

3

3

3

3

3

3

7

7

The textbook’s merge sort is in mergesort.py. Use the timeMergeSort.py program to run merge sort on a list of random items. Complete the following timing table:

	Random # Items
	Textbook’s Merge Sort Timings

	100,000
	

	200,000
	

	400,000
	

e) Recall the general idea of Quick sort is as follows. Assume “n” items to sort.

Ÿ Select a “random” item in the unsorted part as the pivot

Ÿ Rearrange (called partitioning) the unsorted items such that:

[image: image3.wmf]Pivot

Pivot Index

Item

All items < to Pivot

All items >= to Pivot

Ÿ Quick sort the unsorted part to the left of the pivot

Ÿ Quick sort the unsorted part to the right of the pivot

The lecture 17 quick sort is in quicksort.py. Use the timeQuickSort.py program to run quick sort on a list of random items. Complete the following timings to get a feel for the “speed” of quicksort.

	# Items
	Textbook’s Quick Sort Timings

	100,000
	

	200,000
	

	400,000
	

All three advanced sorting algorithms are  (nlog2n) on initially random data. Why do you suppose quick sort is the fastest advanced sort on random items?

After you have completed the above times and answered the above question, raise your hand and explain your answers.

Lab 8 - 3

