
Data Structures - Test 2

Question 1.  A Deque (pronounced “Deck”) ADT is like a queue, but it allows adding or removing items

from either the front or the rear of the Deque.   Abstractly, the Deque behaves as: 

Front Rear
addFront addRear

removeFront removeRear

'a' 'b'

'a' 'b'

Consider the following Deque implementation which uses a Python list representation.

class Deque:

    def __init__(self):

        self.items = []

    def isEmpty(self):

        return self.items == []

    def addRear(self, item):

        self.items.append(item)

    def addFront(self, item):

        self.items.insert(0,item)

    def removeRear(self):

        return self.items.pop()

    def removeFront(self):

        return self.items.pop(0)

    def __len__(self):

        return len(self.items)

 a)  (10 points)  Complete the worst-case big-oh notation for each Deque operation assuming the above

implementation.  Let n be the number of items in the Deque.

lenremoveRearremoveFrontaddRearaddFrontisEmpty

b)  (8 points)  Instead of the above list representation of a Deque, explain how an Array (the textbook Array

class) can be used to improve performance of the Deque.

Fall 2010                                                                                                   Name: ________________________

1



Question 2.  An alternative implementation of a Deque would be a linked implementation as in:

Deque Object 

_front:

_rear:

_size: 4

data     next data     next data     next data     next

256 136 916 576

Node Class Objects

a)  (6 points)  Complete the worst-case big-oh notation for each Deque operation assuming the above

implementation.  Let n be the number of items in the Deque.

lenremoveRearremoveFrontaddRearaddFrontisEmpty

b)  (9 points)  Provide a sentence or two of justification for your answers in part (a) for each of the following

operations:

removeFront:

removeRear

c)  (20 points) Complete the addFront and removeFront methods of the linked Deque implementation:

from node import Node   # Has constructor method: Node(myData, myNext)

# Has public data attributes: data and next

class Deque:

    def __init__(self):

        self._front = None

  self._rear = None

        self._size = 0

    def addFront(self, item):

       

    def removeRear(self):

 

Fall 2010                                                                                                   Name: ________________________

2



d)  (7 points) Suggest a recommendation for improving the linked implementation of the Deque.

Question 3. Consider the following heap with array indexes indicated in [ ]'s.

  6

15 10

114 20 5020

300 125  117

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9]

a)  (4 points) For a node at index i,  what is the index of:

� its left child if it exists:

� its parent if it exists:

b)  (10 points) What would the above heap look like after adding 18, and then popping (dequeuing) an item?

c)  (6 points) Explain why adding a new item to a heap has a worst-case big-oh of Ο (log2 n), where n is the

number of items in the heap

Fall 2010                                                                                                   Name: ________________________

3



Question 4.  Consider implementing a sorted list ADT that includes the following operations:

� indexed-based operations:  [ ] as an accessor and remove (e.g.,  print myList[i] and myList.remove(i))

� content-based operations:  insert and index (e.g., myList.insert(item) and i = myList.index(item))

a)  (5 points) If the underlying representation is an Array sorted by item values, then complete the worst-case

big-oh notation for each sorted list operation.  Assume that a binary search is used to find an item.  Let n be

the number of items in the sorted list.

i = myList.index(item)myList.insert(item)myList.remove(i)myList[i]

b)  (5 points)  If the underlying representation is a doubly-linked list sorted by item values, then complete the

worst-case big-oh notation for each sorted list operation.  Let n be the number of items in the sorted list.

i = myList.index(item)myList.insert(item)myList.remove(i)myList[i]

Question 5.  Recall that merge sort is a recursive divide-and-conquer algorithm such that:

Initial unsorted list of size n

  sorted list of size n

unsorted list of size n/2 unsorted list of size n/2

   sorted list of size n/2    sorted list of size n/2

Divide - splits list/array into two equal parts

Conquer - recursively merge sort each half

Combine - merge the sorted halves back together 

a)  (5  points)  When merging two sorted lists of size n/2 each, what is the worst-case number of comparisons

that must be performed?  (justify your answer for partial credit)

b)  (5  points)  What maximum depth of recursion does the merge sort algorithm require when sorting a list

of size n?  (justify your answer for partial credit) 

Fall 2010                                                                                                   Name: ________________________

4


