
Data Structures - Test 2

Question 1. Perhaps the best way to implement a priority queue uses a array/Python list organized as a heap.

Consider the following heap with array indexes indicated in []'s.

 8

19 22

 84 30 4560

130 250 117 95

[0]

[1] [2]

[3] [4] [5] [6]

[7] [8] [9] [10]

a) (6 points) For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (20 points) What would the above heap look like after adding 20, and then popping (dequeuing) an item?

c) (9 points) Explain why adding a new item to a heap has a worst-case big-oh of Ο (log2 n), where n is the

number of items in the heap.

Spring 2011 Name: ________________________

1

Question 2. (25 points) Below is the textbook's partial ArrayHeap class showing the add method.

class ArrayHeap(object):

 def __init__(self):
 self._heap = []

 def add(self, item):
 self._heap.append(item)
 curPos = len(self._heap) - 1
 while curPos > 0:
 parent = (curPos - 1) / 2
 parentItem = self._heap[parent]
 if parentItem <= item:
 break
 else:
 self._heap[curPos] = self._heap[parent]
 self._heap[parent] = item

 curPos = parent

You are to complete the below version of the add method which uses a recursive siftUp function to move the

new item to its correct spot in the heap. Your siftUp function should have one recursive case:

� if item is not at the root already and the parent > item, then move parent down to the item's current position

and siftUp the item from the parent's position.

If it is not a recursive case, i.e., it is a base case, then we do not need to do anything since the item is at the correct

spot in the heap.

class ArrayHeap(object):

 def __init__(self):
 self._heap = []

 def add(self, item):

 def siftUp(curPos):

 # start of add method's code
 self._heap.append(item) # add item as leaf
 siftUp(len(self._heap) - 1) # call siftUp to move iten to correct spot

Spring 2011 Name: ________________________

2

Question 3. In lab 7, we implemented a positional-list using a doubly-linked list with a header node and trailer

node to reduce the number of “special cases” (e.g., inserting first item in an empty list). An empty list looks like:

previous data next

"header node" "trailer node"

previous data next

_header

_current

_trailer

_size 0

"empty" LinkedPositionalList object

Instead of thinking of a cursor between two list items like the textbook, we have a current item which is always

defined as long as the list is not empty. We inserted and deleted relative to the curent item.

Replaces the current item by the newValue. Precondition: the list is not empty.L.replace(newValue)

Makes the last item the current item. Precondition: the list is not empty.L.last()

Makes the first item the current item. Precondition: the list is not empty.L.first()

Precondition: hasPrevious returns True. Postcondition: The current item is has moved

 left one item

L.previous()

Returns True if the current item has a previous item; otherwise return False.

Precondition: the list is not empty.

L.hasPrevious()

Precondition: hasNext returns True. Postcondition: The current item is has moved

right one item

L.next()

Returns True if the current item has a next item; otherwise return False. Precondition:

 the list is not empty.

L.hasNext()

Returns the current item without removing it or changing the current position.

Precondition: the list is not empty.

L.getItem()

Removes and returns the current item. Making the next item the current item if one

exists; otherwise the tail item in the list is the current item. Precondition: the list is

not empty.

L.remove()

Inserts item before the current item, or as the only item if the list is empty. The new

item is the current item.

L.insertBefore(item)

Inserts item after the current item, or as the only item if the list is empty. The new

item is the current item.

L.insertAfter(item)

Description of operationPositional-based operations

a) (6 points) Complete the worst-case big-oh notation for each LinkedPositionalList operation

assuming the above implementation. Let n be the number of items in the list.

replacenextfirstremoveinsertBeforeinsertAfter

b) (4 points) Provide a sentence of justification for your answers in part (a) for each of the following operations:

insertBefore:

first:

Spring 2011 Name: ________________________

3

c) (30 points) Complete the insertBefore and first methods of the LinkedPositionalList

implementation:

previous data nextprevious data next previous data next

_header

_current

_trailer

_size 1

LinkedPositionalList object

"cat"

from node import TwoWayNode # Has __init__ method: TwoWayNode(myData,myPrevious,myNext)
 # Has public data attributes: data, previous, and next

class LinkedPositionalList(object):
 """ Linked implementation of a positional list."""

 def __init__(self):
 self._header = TwoWayNode(None, None, None)
 self._trailer = TwoWayNode(None, self._header, None)
 self._header.next = self._trailer
 self._current = self._header
 self._size = 0

 def insertBefore(self, item):
 """Inserts item before the current item, or as the only item if the list is empty.
 The new item is the current item."""

 def first(self):
 """Moves the cursor to the first item if there is one.
 Precondition: the list is not empty."""

Spring 2011 Name: ________________________

4

