* Spring 2012 Name: M&lw IC =,
Data Structures - Test 2

Question 1. Perhaps the best way to implement a priority queue uses a array/Python list organized as a heap.
Consider the following heap with array/list indexes indicated in | J's.

Z« e,
a) (6 points) For a node at mde‘{ i, what is the index of: 2t
(» its left child if it exists: 2 ‘rf,t 4 {
p

e itsright child if it exists: ¥4 +1

* its parent if it exists: (1~ [) /"‘2,,
b) (14 points) What would the above heap look like after ad ing 14, and then popping (dequeuing) an item?

Pop refeons |

¢) (10 points) We discussed using a heap to perform a sort. The steps of the algorithm are:

myArta - unsotted array with n items
Steps: i ul
1, Create an empty heap *
2, Add all n array items into heap | }] .
{l}* heap with O([M”A) (541
n items ;

3. Pop heap items back to array in sorted order *

myArray] sorted array with n items

Determine and exflam he O() for this algorithm. f ﬂpA /I(Za’ﬂ 4ﬂjf j @ (/ é)) < jy? e

HALA!L{ + M (41 st Dltoe
g Qﬂh y $o §4€ R ilﬁfa f/@e
\WS'H/J 3 Ol 75”!) Sinte @ad Pop oy Iw? u it g%e{f)o(/,,7:.53)6i el ?

« Spring 2012 Name:

Question 2. (15 points) Quick sort general idea is as follows. For a piece of the list greater than one in size:
* Partition the list by “randomly” selecting an item (called the pivor) in the unsorted part of the list and
rearranging the unsorfed items such that:

Pivot Index

Pivot
Item

All items < 1o Pivot All items >= to Pivot

* Quick sort the unsorted part to the left of the pivot
* Quick sort the unsorted part to the right of the pivot

a) Given the following partition function which performs the first step and returns the index of the pivot

after this rearrangement, complete the recursive quicksortHelper function.
def quicksort(lyst):
quicksortHelper (lyst, 0O,

def partition{lyst, left, right}):
Returns pivot index after partitioning
middle = (left + right) / 2
pivot = lyst{middle]
lystimiddle] = 1ystiright])
lystlrightl = pivot
Set boundary peint to first position
boundary = left
Move items less than pivot to the left

len{iyst) - 1)

def quicksortHelper({lyst, left, right):

,‘F gg{a% Z m‘a)é'%':

for index in xrange{left, right):
i£ lyst(index] < pivot:
temp = lyst[index]
lystiindex} = lystiboundaryl
lyst{boundary] = temp
boundary += 1
Bxchange the pivot and boundary items
temp = lyst{boundary]
lyst [boundaryl = lyst[right]
lyst[right] = temp
return boundary

-

P,'VD-{»T,,ij = f)fr'f’rh)q (ly 57'} le ‘/fo] m;}éf)
iw‘g !f&'@m%"" !“4.@40&# ('\/j{‘J I(“]Q‘)[] plir;'/'jl}pgfét’g m’)
1u:'c,[c Sort a/pvf (1 yst :pf.,"-é"il;;téjﬂtﬁ 4 | ’ m‘?e.{r,a)

b) Let “n” be the number of items between left and right. What is the worst-case O() for partition? @ (' /7)

6“»’1 (e ‘Fur”laoia J‘%m ‘fef {iz‘éfm fﬁ/i)% ¢ ;w‘.:}{?g

¢) Ideally, the pivot item splits the list into two equal size problems, but in the worst case the pivot is all the way
to one end. What would be the big-oh for Quick Soit in the worst case? (Explain your answer)

o

S

1]

perfitun l o

__ /”7/’“ "'“"”\

S

S Nn-1 -
sl
= N (Q;Q
rA
. OCa)
(>

* Spring 2012

Question 3. In lab 6 and homework #4, we implemented a positional-list using a doubly-linked list with a header
node and frailer node to reduce the number of “special cases” (e.g., inserting first item in an empty list). An

L

empty list looks like:

Name:

"empty" LinkedPositionallist object

"header node" "trailer node"

previous data next previous data next

— ¥

/

Instead of thinking of a cursor between two list items like the textbook, we have a current ifem which is always
defined as long as the list is not empty. We inserted and deleted relative to the curent item.

Positional-based
operations

Description of operation

L.insertAfter (item)

Inserts item after the current item, or as the only item if the list is empty. The new itemn is
the current item.

L.insertBefore (item)

Inserts item before the current item, or as the only item if the list is empty. The new item
is the current item.

L.remove{)

Removes and returns the current item. Making the next item the current item if one exists;
otherwise the tail item in the list is the current item. Precondition: the list is not empty.

L.getCurrent ()

Returns the current item without removing it or changing the current position.
Precondition: the list is not empty.

L.hasNext ()

Returns True if the current item has a next item; otherwise return False. Precondition: the
list is not empty.

L.next ()

Precondition: hasNext returns True. Posteondition: The current item is has moved 1ight
one item

L.hasPreviocus (}

Returns True if the current item has a previous item; otherwise return False. Precondition:
the list is not empty.

L.previous{)

Precondition: hasPrevious returns True. Postcondition: The current item is has moved left
one item

L.first (}

Makes the first item the current item. Precondition: the list is not empty.

L.last ()}

Makes the last item the curreat item. Precondition: the list is not empty.

L.replace (newValue)

Replaces the current item by the newValue. Precondition: the list is not empty.

a) (6 points) Complete the worst-case big-oh notation for each LinkedPositionallist operation
assuming the above implementation. Let n be the number of items in the list.

insertBefore

insertAfter

remove last)/] next previous

OU}

oli)

o) 0() 6() A

b) (4 points) Provide a sentence of justification for your answers in part (a) for each of the following operations:

Liest ¢ q ¢
fagk

- é\eaé&}’ poﬂv\"fi +'€>

(an !){ {)W‘\j (" f:-?q{”'{.iiﬂ‘{ !lé‘r?ﬁ
insertBefore: 5@(&0— SQ
‘P”‘f‘*&'l Yo fm,ff; A R .;fiw})

Ulﬂ(’“ Mwﬁ% ‘d‘e]Ct'rj’f’ d(‘/‘w;/ ywvéé

P Jau!a’y» ’t"!l{”é’ﬁ !fif We \)»“H Fié’éﬂﬂ Fo #av /9 /ev!@
gﬁ?“{z’(é’ _Curren '/’ l‘-!ig«”ﬂ‘

Spring 2012 Name:

¢) (30 points) Complete the code for a new method insertaAtIndex{self, item, index)which inserts item at

the specified index position and makes the new item the current item, Assume the first index in the list is 0. If
the specified index is negative or , then inseit at the beginning of the list. If the specified index is bigger than
or equal to the lists size, then insert at the end of the list.

insertAt here if any negative insertAt here if insertAt here if any index >=
or 0 index specified index 1 specified size is specified
LinkedPositionallist object
_header index 0 v index 1 A
_current previous data next previous data next previous data next previous data next
_trailer *oat" "dog"
_size T
/(D /
 Aa—_——
R**Li’/h;b

- L
firom node import TwoWayNode # Has _ init method: TwoWayMNode {myData,myPrevious,myNext)
' # Has public data attributes: data, previous, and next

class LinkedPositionallist {object):
" Tinked implementation of a positional list,™™ "

def init (self}:
self. header = TwoWayNode (None, None, None)
self. trailer = TwoWayNode{Mone, self. header, None}
self., header.next = self. trailer
self. current = self. header
self. size = 0

def insertAtIndex({self, item, index):
""rinserts item at the specified index position and makes the new item the
current item. Assume the first index in the list is 0. If the specified index

is negative or 0, then insert at the beginning of the list. If the specified
index is bigger than or equal to the lists size, then insert at the end of the
list. mwwiIr

Foindey <=0
i Self, _ Lurreat :se(f,wkgaﬁcf,
elif index>s celf, sTae ! ‘
S\, ot = ge,l’%..ﬂ(ail . POV VA

ek@d{ﬂw - self _heder

For covnt 1A xmﬁﬁe(’imﬂex):
Cvvson = (vvior, pext
temp = TWoW%y Wode (1tee cursy -y Corsep, nex“lj)
temp. Prtvipus, next =temp
emp, nert, Previovg = Fem i
Se ’FM, Cyveent = %@mf.ﬂ
SUl. sige ¢ =

Spring 2012 ' Name:
Question 4. (15 points) The Python for loop allows traversal of built-in data structures (strings, lists, tuple, etc)
by an iterator. To accomplish this with our data structures we need to include an __iter (self) method that
gets used by the built-in iter function to create a special type of object called a generator object. The generator
object exccutes as a separate process running concurrently with the process that created and uses the data

structure being iterated.
A singly-linked list implementation of the queue (LinkedQueue class in the text) conceptually would look like:

"Abstract Queue” LinkedQueue Object

data next data next data next
rwl ’X! ryl ’W| 1) ’X' . 'y'
front rear

The iterator (__iter) method for the LinkedQueue class would be:

class LinkedQueue (object):
wnr TLink-based queue implementation."""

def iter (self):
"M"UAR iterator for a linked queue™"™

cursor = self. front
while True:
if cursor == None:

raise Stopliteration
yvield cursor.data
CUrser = Ccursor.next

Writean _iter method for the LinkedPositionalList class.

Jet __iber (sol));

(UV‘.S:?,/‘ = Se,ﬁcm'heﬁ}gff V]@k"?’;
while Trve:
‘[)
¥ tyrgor = Self, - hpgilen
rq15e g"ﬁ*’/ajlf“&m‘/bn
\/f@!é? CorSor, data

Corgpom,= Lvr§or, n eyt

