
1. Consider the following sequential search (linear search) code:

def linearSearch(aList, target):

 """Returns the index of target in aList

 or -1 if target is not in aList"""

 for position in range(len(aList)):

 if target == aList[position]:

 return position

 return -1

def sequentialSearch(alist, item):
 """ Sequential search of unorder list """
 pos = 0
 found = False

 while pos < len(alist) and not found:
 if alist[pos] == item:
 found = True
 else:
 pos = pos+1

 return found

Faster sequential search codeTextbook’s Listing 5.1

a) What is the basic operation of a search?

b) For the following aList value, which target value causes linearSearch to loop the fewest (“best case”)

number of times?

aList: 10 15 28 42 60 69 75 88 90 93 97

 0 1 2 3 4 5 6 7 8 9 10

c) For the above aList value, which target value causes linearSearch to loop the most (“worst case”) number of

times?

d) For a successful search (i.e., target value in aList), what is the “average” number of loops?

def linearSearchOfSortedList(target, aList):

 """Returns the index position of target in

 sorted aList or -1 if target is not in aList"""

 breakOut = False

 for position in range(len(aList)):

 if target <= aList[position]:

 breakOut = True

 break

 if not breakOut:

 return -1

 elif target == aList[position]:

 return position

 else:

 return -1

def orderedSequentialSearch(alist, item):

 """ Sequential search of order list """

 pos = 0

 found = False

 stop = False

 while pos < len(alist) and not found and not stop:

 if alist[pos] == item:

 found = True

 else:

 if alist[pos] > item:

 stop = True

 else:

 pos = pos+1

 return found

Faster sequential search codeTextbook’s Listing 5.2

e) The above version of linear search assumes that aList is sorted in ascending order. When would this version

perform better than the original linearSearch at the top of the page?

Data Structures Lecture 14 Name:__________________

Lecture 14 Page 1

2. Consider the following binary search code:

def binarySearch(target, lyst):

 """Returns the position of the target

 item if found, or -1 otherwise."""

 left = 0

 right = len(lyst) - 1

 while left <= right:

 midpoint = (left + right) // 2

 if target == lyst[midpoint]:

 return midpoint

 elif target < lyst[midpoint]:

 right = midpoint - 1

 else:

 left = midpoint + 1
 return -1

def binarySearch(alist, item):
 first = 0
 last = len(alist)-1
 found = False

 while first<=last and not found:
 midpoint = (first + last)//2
 if alist[midpoint] == item:
 found = True
 else:
 if item < alist[midpoint]:
 last = midpoint-1
 else:
 first = midpoint+1

 return found

Faster binary search codeTextbook’s Listing 5.3

a) “Trace” binary search to determine the worst-case basic total number of comparisons?

1 20 n-1. . . target

151

 midpoint

 midpoint

100

200

10

elements

remaining

worst-case

loop

1 "n"

.

.

.

left right

 #

b) What is the worst-case big-oh for binary search?

c) What is the best-case big-oh for binary search?

d) What is the average-case (expected) big-oh for binary search?

e) If the list size is 1,000,000, then what is the maximun number of comparisons of list items on a successful search?

f) If the list size is 1,000,000, then how many comparisons would you expect on an unsuccessful search?

Data Structures Lecture 14 Name:__________________

Lecture 14 Page 2

3. Hashing Motivation and Terminology:

a) Sequential search of an array or linked list follows the same search pattern for any given target value being

searched for, i.e., scans the array from one end to the other, or until the target is found.

If n is the number of items being searched, what is the average and worst case big-oh notation for a sequential search?

average case O()

worst case O()

b) Similarly, binary search of a sorted array (or AVL tree) always uses a fixed search strategy for any given target

value. For example, binary search always compares the target value with the middle element of the remaining

portion of the array needing to be searched.

If n is the number of items being searched, what is the average and worst case big-oh notation for a search?

average case O()

worst case O()

Hashing tries to achieve average constant time (i.e., O(1)) searching by using the target’s value to calculate where

in the array/Python list (called the hash table) it should be located, i.e., each target value gets its own search pattern.

The translation of the target value to an array index (called the target’s home address) is the job of the hash function.

A perfect hash function would take your set of target values and map each to a unique array index.

Set of Keys

John Doe

John Doe hash(John Doe) = 6

Philip East

Philip East hash(Philip East) = 3

Mark Fienup

Mark Fienup hash(Mark Fienup) = 5

Ben Schafer

Ben Schafer

hash(Ben Schafer) = 8

Hash function Hash Table Array

0

1

2

3

4

5

6

7

8

9

10

3-2187

3-5918

3-2939

3-4567

a) If n is the number of items being searched and we had a perfect hash function, what is the average and worst case

big-oh notation for a search?

average case O()

worst case O()

4. Unfortunately, perfect hash functions are a rarity, so in general many target values might get mapped to the same

hash-table index, called a collision.

Collisions are handled by two approaches:

� open-address with some rehashing strategy: Each hash table home address holds at most one target value. The

first target value hashed to a specify home address is stored there. Later targets getting hashed to that home

address get rehashed to a different hash table address. A simple rehashing strategy is linear probing where the

hash table is scanned circularly from the home address until an empty hash table address is found.

� chaining, closed-address, or external chaining: all target values hashed to the same home address are stored in a

data structure (called a bucket) at that index (typically a linked list, but a BST or AVL-tree could also be used).

Thus, the hash table is an array of linked list (or whatever data structure is being used for the buckets)

Data Structures Lecture 14 Name:__________________

Lecture 14 Page 3

5. Consider the following examples using open-address approach with a simple rehashing strategy of linear probing

where the hash table is scanned circularly from the home address until an empty hash table address is found.

Set of Keys

John Doe

John Doe hash(John Doe) = 6

Philip East

Philip East hash(Philip East) = 3

Mark Fienup

Mark Fienup hash(Mark Fienup) = 5

Ben Schafer

Ben Schafer

hash(Ben Schafer) = 8

hash(Paul Gray) = 3

hash(Sarah Diesburg) = 3

Hash function Hash Table Array

0

1

2

3

4

5

6

7

8

9

10

3-2187

3-5918

3-2939

3-4567

Paul Gray

Sarah Diesburg

(3-5917)

(3-3-7395)

a) Assuming open-address with linear probing where would Paul Gray and then Sarah Diesburg be placed?

Common rehashing strategies include the following.

Use the target key to determine an offset amount to be used each attempt, i.e.,

(home address + (rehash attempt #) * offset) % (hash table size), where the hash table size is a power

of 2 and the offset hash returns an odd value between 1 and the hash table size

double

hashing

Check the square of the attempt-number away for an available slot, i.e.,

(home address + ((rehash attempt #)2 +(rehash attempt #))//2) % (hash table size), where the hash table size is

a power of 2

quadratic

probing

Check next spot (counting circularly) for the first available slot, i.e.,

(home address + (rehash attempt #)) % (hash table size)

linear

probing

Description
Rehash

Strategy

b) Assume quadratic probing, insert “Paul Gray” and “Sarah Diesburg” into the hash table.

Data Structures Lecture 14 Name:__________________

Lecture 14 Page 4

Set of Keys

John Doe

John Doe hash(John Doe) = 6

Philip East

Philip East hash(Philip East) = 3

Mark Fienup

Mark Fienup hash(Mark Fienup) = 5

Ben Schafer

Ben Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 3

hash(Sarah Diesburg) = 3

Hash function Hash Table Array

0

1

2

3

4

5

6

7

3-2187

3-5918

3-2939

3-4567

Paul Gray

Sarah Diesburg

(3-5917)

(3-7395)

c) Assume double hashing, insert “Paul Gray” and “Sarah Diesburg” into the hash table.

Set of Keys

John Doe

John Doe hash(John Doe) = 6

Philip East

Philip East hash(Philip East) = 3

Mark Fienup

Mark Fienup hash(Mark Fienup) = 5

Ben Schafer

Ben Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 3
rehash_offset(Paul Gray) = 1

hash(Sarah Diesburg) = 3
rehash_offset(Sarah Diesburg) = 3

Hash function Hash Table Array

0

1

2

3

4

5

6

7

3-2187

3-5918

3-2939

3-4567

Paul Gray

Sarah Diesburg

(3-5917)

(3-7395)

d) For the above double-hashing example, what would be the sequence of hashing and rehashing addresses tried for

Sarah Diesburg if the table was full? For the above example, (home address + (rehash attempt #) * offset) % (hash

table size) would be: (3 + (rehash attempt #) * 3) % 8

 Address

109876543210Rehash Attempt #

e) Indicate whether each of the following rehashing strategies suffer from primary or secondary clustering.

� primary clustering - keys mapped to a home address follow the same rehash pattern

� secondary clustering - rehash patterns from initially different home addresses merge together

Use the target key to determine an offset amount to be used each attempt,

i.e., (home address + (rehash attempt #) * offset) % (hash table size),

where the hash table size is a power of 2 and the offset hash returns an

odd value between 1 and the hash table size

double

hashing

Check a square of the attempt-number away for an available slot, i.e.,

(home address + ((rehash attempt #)2 +(rehash attempt #))/2) % (hash table size),

where the hash table size is a power of 2

quadratic

probing

Check next spot (counting circularly) for the first available slot, i.e., (home

address + (rehash attempt #)) % (hash table size)

linear

probing

secondary

clustering

primary

clustering

Suffers from:

Description
Rehash

Strategy

6. Let λ be the load factor (# item/hash table size). The average probes with linear probing for insertion or

unsuccessful search is: . The average for successful search is: .
1
2

() 1 +
1

(1−�)
2

1
2

() 1 +
1

(1−�)

a) Why is an unsuccessful search worse than a successful search?

Data Structures Lecture 14 Name:__________________

Lecture 14 Page 5

The average probes with quadratic probing for insertion or unsuccessful search is:
1

1−� − � − log
e
(1 − �)

The average probes with quadratic probing for successful search is: 1 −
�

2
() − log

e
(1 − �)

Consider the following table containing the average number probes for various load factors:

5.112.211.771.441.16successful

103.625.813.472.191.37unsuccessfulQuadratic

Probing

50.503.002.021.501.17successful

5000.5013.005.092.501.39unsuccessfulLinear

Probing

0.990.80.670.50.25

Load Factor, λλλλ
Search outcome

Probing

Type

b) Why do you suppose the "general rule of thumb" in hashing tries to keep the load factor between 0.5 and 0.67?

7. Allowing deletions from an open-address hash table complicates the implementation. Assuming linear probing

we might have the following

Set of Keys

John Doe

John Doe hash(John Doe) = 6

Philip East

Philip East hash(Philip East) = 3

Mark Fienup

Mark Fienup hash(Mark Fienup) = 5

Ben Schafer

Ben Schafer

hash(Ben Schafer) = 8

hash(Paul Gray) = 3

hash(Sarah Diesburg) = 4

Hash function Hash Table Array

0

1

2

3

4

5

6

7

8

9

10

3-2187

3-5918

3-5917

3-2939

3-4567

Paul Gray

Paul Gray

Sarah Diesburg

Sarah Diesburg 3-7395

a) If "Mark Fienup" is deleted, how will we find Sarah Diesburg?

b) How might we fix this problem?

Data Structures Lecture 14 Name:__________________

Lecture 14 Page 6

