Data Structures (CS 1520) Lecture 29 Name:

1. Traveling Salesperson Problem (TSP) -- Find an optimal (i.e., minimum length) tour when at least one tour exists.
A tour (or Hamiltonian circuit) is a path from a vertex back to itself that passes through each of the other vertices
exactly once. (Since a tour visits every vertice, it does not matter where you start, so we will generally start at v;.)
What are the length of the following tours?

a) [vo, v3, va, vi, v, w0}

n..n

¢) For a graph with "n" vertices (vo, vi, V2, ... ,Va1), One possible approach to solving TSP would be to brute-force
generate all possible tours to find the minimum length tour. "Complete" the following decision tree to determine the
number of possible tours.

a@/'

Unfortunately, TSP is an “NP-hard” problem, i.e., no known polynomial-time algorithm.

Lecture 29 Page 1



Data Structures (CS 1520) Lecture 29 Name:

2. Handling '""Hard" Problems: For many optimization problems (e.g., TSP, knapsack, job-scheduling), the best
known algorithms have run-time's that grow exponentially (O(2") or worse). Thus, you could wait centuries for the
solution of all but the smallest problems!

Ways to handle these "hard" problems:

¢ Find the best (or a good) solution "quickly" to avoid considering the vast majority of the 2" worse
solutions, e.g, Backtracking (section 4.6) and Best-first-search-branch-and-bound

e See if a restricted version of the problem meets your needed that might have a tractable (polynomial, e.g.,
An?)) solution. e.g., TSP problem satisfying the triangle inequality, Fractional Knapsack problem

e Use an approximation algorithm to find a good, but not necessarily optimal solution
Backtracking general idea: (Recall the coin-change problem from lectures 10 and 13)
e Search the "state-space tree" using depth-first search to find a suboptimal solution quickly

e Use the best solution found so far to prune partial solutions that are not "promising,", i.e., cannot lead to a
better solution than one already found.

The goal is to prune enough of the state-space tree (exponential is size) that the optimal solution can be found in a
reasonable amount of time. However, in the worst case, the algorithm is still exponential.

My simple backtracking solution for the coin-change problem without pruning:

def recMC(change, coinValuelist):
global backtrackingNodes
backtrackingNodes += 1
minCoins = change
if change in coinValuelList:
return 1

Results of running this code:

Change Amount: 63 Coin types: [1, 5, 10, 25]

else: Run-time: 45.815 seconds
for i in coinValueList: Fewest number of coins 6
if i <= change: Number of Backtracking Nodes: 67,716,925
numCoins = 1 + recMC(change - i, coinValuelList)
if numCoins < minCoins:
minCoins = numCoins

return minCoins

Consider the output of running the backtracking code with pruning twice with a change amount of 63 cents.

Change Amount: 63 Coin types: [1, 5, 10, 25] Change Amount: 63 Coin types: [25, 10, 5, 1]
Run-time: 0.036 seconds Run-time: 0.003 seconds

Fewest number of coins 6 Fewest number of coins 6

The number of each type of coins is: The number of each type of coins is:

number of l-cent coins is 3 number of 25-cent coins is 2

number of 5-cent coins is O number of 10-cent coins is 1

number of 10-cent coins is 1 number of 5-cent coins is 0

number of 25-cent coins is 2 number of l-cent coins is 3

Number of Backtracking Nodes: 4831 Number of Backtracking Nodes: 310

a) With the coin types sorted in ascending order what is the first solution found?

b) How useful is the solution found in (a) for pruning?

¢) With the coin types sorted in descending order what is the first solution found?

d) How useful is the solution found in (c) for pruning?

Lecture 29 Page 2



Data Structures (CS 1520) Lecture 29 Name:

e) For the coin-change problem, backtracking is not the best problem-solving technique. What technique was better?

3. a) For the TSP problem, why is backtracking the best problem-solving technique?

b) To prune a node in the search-tree, we need to be certain that it cannot lead to the best solution. How can we
calculate a “bound” on the best solution possible from a node (e.g., say node with partial tour: [vo, Va4, vi])?

[v()’ Vz, v] ,V3 ,V4 7v0]

,,,,,,,,,,,,

best tour so far = 26

Lecture 29 Page 3



Data Structures (CS 1520) Lecture 29 Name:

Approximation Algorithm for TSP with Triangular Inequality
Restrictions on the weighted, undirected graph G=(V, E):
1. There is an edge connecting every two distinct vertices.

2. Triangular Inequality: If W(u, v) denotes the weight on the edge connecting vertex u to vertex v, then for every
other vertex y,
W(u, v) <W(u,y) + W(y, v).
NOTES:
= These conditions satisfy automatically by a lot of natural graph problems, e.g., cities on a planar map with weights
being as-the-crow-flys (Euclidean distances).
= Even with these restrictions, the problem is still NP-hard.

A simple TSP approximation algorithm:
1. Determine a Minimum Spanning Tree (MST) for G (e.g., Prim's Algorithm section 4.1)

2. Construct a path that visits every node by performing a preorder walk of the MST. (A preorder walk lists a tree
node every time the node is encounter including when it is first visited and "backtracked" through.)

3. Create a tour by removing vertices from the path in step 2 by taking shortcuts.

Determine a Minimum Spanning Tree (MST) for G (e.g., Prim's Algorithm) if we start with vertex 1 in the MST.
(Assume edges connecting all vertices with their Euclidean distances)

Prim's algorithm is a greedy algorithm that performs the following:
a) Select a vertex at random to be in the MST.

b) Until all the vertices are in the MST:
= Find the closest vertex not in the MST, i.e., vertex closest to any vertex in the MST
= Add this vertex using this edge to the MST

Lecture 29 Page 4



