
1. Traveling Salesperson Problem (TSP) -- Find an optimal (i.e., minimum length) tour when at least one tour exists.

A tour (or Hamiltonian circuit) is a path from a vertex back to itself that passes through each of the other vertices

exactly once. (Since a tour visits every vertice, it does not matter where you start, so we will generally start at v0.)

What are the length of the following tours?

a) [v0, v3, v4, v1, v2, v0]

b) List another tour starting at v0 and its length.

c) For a graph with "n" vertices (v0, v1, v2, ... ,vn-1), one possible approach to solving TSP would be to brute-force

generate all possible tours to find the minimum length tour. "Complete" the following decision tree to determine the

number of possible tours.

v 1

v 1

v 1

v 0

v 0

 2
v

 2
v

 2
v

 3
v

 3
v

.

..

.. .

.

..

.

..

.

..

v n -2

v n -1

v n -1

v n -1

v n -1

Unfortunately, TSP is an “NP-hard” problem, i.e., no known polynomial-time algorithm.

Data Structures (CS 1520) Lecture 29 Name:_________________

Lecture 29 Page 1

v 1 2 v

 4
v

 3
v

 0
v

8

8
8 4

2

5

2

1

1

6

3

3

9
7

6

2. Handling "Hard" Problems: For many optimization problems (e.g., TSP, knapsack, job-scheduling), the best

known algorithms have run-time's that grow exponentially (O(2n) or worse). Thus, you could wait centuries for the

solution of all but the smallest problems!

Ways to handle these "hard" problems:

• Find the best (or a good) solution "quickly" to avoid considering the vast majority of the 2n worse

solutions, e.g, Backtracking (section 4.6) and Best-first-search-branch-and-bound

• See if a restricted version of the problem meets your needed that might have a tractable (polynomial, e.g.,

Ο(n3)) solution. e.g., TSP problem satisfying the triangle inequality, Fractional Knapsack problem

• Use an approximation algorithm to find a good, but not necessarily optimal solution

Backtracking general idea: (Recall the coin-change problem from lectures 10 and 13)

• Search the "state-space tree" using depth-first search to find a suboptimal solution quickly

• Use the best solution found so far to prune partial solutions that are not "promising,", i.e., cannot lead to a

better solution than one already found.

The goal is to prune enough of the state-space tree (exponential is size) that the optimal solution can be found in a

reasonable amount of time. However, in the worst case, the algorithm is still exponential.

My simple backtracking solution for the coin-change problem without pruning:

Results of running this code:

Change Amount: 63 Coin types: [1, 5, 10, 25]

Run-time: 45.815 seconds

Fewest number of coins 6

Number of Backtracking Nodes: 67,716,925

Consider the output of running the backtracking code with pruning twice with a change amount of 63 cents.

a) With the coin types sorted in ascending order what is the first solution found?

b) How useful is the solution found in (a) for pruning?

c) With the coin types sorted in descending order what is the first solution found?

d) How useful is the solution found in (c) for pruning?

Data Structures (CS 1520) Lecture 29 Name:_________________

Lecture 29 Page 2

def recMC(change, coinValueList):

 global backtrackingNodes

 backtrackingNodes += 1

 minCoins = change

 if change in coinValueList:

 return 1

 else:

 for i in coinValueList:
 if i <= change:

 numCoins = 1 + recMC(change - i, coinValueList)

 if numCoins < minCoins:

 minCoins = numCoins

 return minCoins

Change Amount: 63 Coin types: [1, 5, 10, 25]

Run-time: 0.036 seconds

Fewest number of coins 6

The number of each type of coins is:

number of 1-cent coins is 3

number of 5-cent coins is 0

number of 10-cent coins is 1

number of 25-cent coins is 2

Number of Backtracking Nodes: 4831

Change Amount: 63 Coin types: [25, 10, 5, 1]

Run-time: 0.003 seconds

Fewest number of coins 6

The number of each type of coins is:

number of 25-cent coins is 2

number of 10-cent coins is 1

number of 5-cent coins is 0

number of 1-cent coins is 3

Number of Backtracking Nodes: 310

e) For the coin-change problem, backtracking is not the best problem-solving technique. What technique was better?

3. a) For the TSP problem, why is backtracking the best problem-solving technique?

b) To prune a node in the search-tree, we need to be certain that it cannot lead to the best solution. How can we

calculate a “bound” on the best solution possible from a node (e.g., say node with partial tour: [v0, v4, v1])?

[,] [,]

[, ,]

[]

v 1

v 1 v 0 v 0 v 0

v 0

v 0

 2 v
 4

v

 4 v

[, , , , ,] v 1 v 0 v 0 2
v

 4
v

 3
v

0

[,]

v 1 2
v

 4
v

 3
v

 0
v

8

8
8 4

2

5

2

1

1

6

3

3

9
7

6

6 3

7

26

best tour so far = 26

Data Structures (CS 1520) Lecture 29 Name:_________________

Lecture 29 Page 3

Approximation Algorithm for TSP with Triangular Inequality

Restrictions on the weighted, undirected graph G=(V, E):

1. There is an edge connecting every two distinct vertices.

2. Triangular Inequality: If W(u, v) denotes the weight on the edge connecting vertex u to vertex v, then for every

other vertex y,

W(u, v) W(u, y) + W(y, v).[

NOTES:

� These conditions satisfy automatically by a lot of natural graph problems, e.g., cities on a planar map with weights

being as-the-crow-flys (Euclidean distances).

� Even with these restrictions, the problem is still NP-hard.

A simple TSP approximation algorithm:

1. Determine a Minimum Spanning Tree (MST) for G (e.g., Prim's Algorithm section 4.1)

2. Construct a path that visits every node by performing a preorder walk of the MST. (A preorder walk lists a tree

node every time the node is encounter including when it is first visited and "backtracked" through.)

3. Create a tour by removing vertices from the path in step 2 by taking shortcuts.

Determine a Minimum Spanning Tree (MST) for G (e.g., Prim's Algorithm) if we start with vertex 1 in the MST.

(Assume edges connecting all vertices with their Euclidean distances)

1

2

3

4

5

6 7

8

Prim's algorithm is a greedy algorithm that performs the following:

a) Select a vertex at random to be in the MST.

b) Until all the vertices are in the MST:

� Find the closest vertex not in the MST, i.e., vertex closest to any vertex in the MST

� Add this vertex using this edge to the MST

Data Structures (CS 1520) Lecture 29 Name:_________________

Lecture 29 Page 4

