
Data Structures - Test 2

Question 1. (5 points) What is printed by the following program? Output:

def recFn(x, y):
 print(x, y)
 if x <= y:
 return x
 else:
 return x + recFn(x // 10, y + 1) + y

print("Result = ", recFn(1000, 2))

Question 2. (8 points) Write a recursive Python function to compute the following mathematical function, G(n):

G(n) = n for all value of n ≤ 0

G(n) = G(n-6) + G(n-4) + G(n-2) for all values of n > 0.
def G(n):

Question 3. (7 points) a) For the above recursive function G(n), complete the calling-tree for G(6).

G(6)

G(0) G(2) G(4)

b) What is the value of G(6)?

c) What is the maximum height of the run-time stack when calculating G(6) recursively?

Spring 2014 Name: ______________________

1

Run-time Stack

x:

y: 2

1000

call-fram
e

In
itial

o
f recF

n

Question 4. (15 points.) Consider the following insertion sort code which sorts in ascending order.

def insertionSort(myList):

 for firstUnsortedIndex in range(1,len(myList)):

 itemToInsert = myList[firstUnsortedIndex]

 testIndex = firstUnsortedIndex - 1

 while testIndex >= 0 and myList[testIndex] > itemToInsert:

 myList[testIndex+1] = myList[testIndex]

 testIndex = testIndex - 1

 myList[testIndex + 1] = itemToInsert

a) What is the purpose of the testIndex >= 0 while-loop comparison?

b) Consider the modified insertion sort code that eliminates the testIndex >= 0 while-loop comparison.

def insertionSortB(myList):

 minIndex = 0

 for testIndex in range(1,len(myList)):

 if myList[testIndex] < myList[minIndex]:

 minIndex = testIndex

 temp = myList[0]

 myList[0] = myList[minIndex]

 myList[minIndex] = temp

 for firstUnsortedIndex in range(1,len(myList)):

 itemToInsert = myList[firstUnsortedIndex]

 testIndex = firstUnsortedIndex - 1

 while myList[testIndex] > itemToInsert:

 myList[testIndex+1] = myList[testIndex]

 testIndex = testIndex - 1

 myList[testIndex + 1] = itemToInsert

b) Explain how the bolded code in the modified insertion sort code above allows for the elimination of the

testIndex >= 0 while-loop comparison.

Consider the following timing of the above two insertion sorts on lists of 10000 elements.

6.4 seconds7.3 secondsRandomly ordered list of 10000 numbers

0.004 seconds0.005 secondsAlready in ascending order: 1, 2, ..., 9999, 10000

12.3 seconds14.0 secondsSorted in descending order: 10000, 9999, ..., 2, 1

insertionSortB - modified

version in middle of the page

insertionSort - at the top of

page Initial arrangement of list before sorting

c) Explain why insertionSortB (modified version in middle of page) out performs the original insertionSort.

d) In either version, why does sorting the randomly order list take about halve the time of sorting the initially

descending ordered list?

Spring 2014 Name: ______________________

2

 Question 5. (20 points) Write a variation of selection sort that:

� sorts in ascending order (smallest to largest)

� builds the sorted part on the left-hand side of the list, i.e.,

Sorted Part Unsorted Part

def selectionSort(myList):

Spring 2014 Name: ______________________

3

Question 6. (15 points) Recall the common rehashing strategies we discussed for open-address hashing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)2 +(rehash attempt #))/2] % (hash table size), where the hash table size

is a power of 2. Integer division is used above

quadratic

probing

Check next spot (counting circularly) for the first available slot, i.e.,

(home address + (rehash attempt #)) % (hash table size)

linear

probing

DescriptionStrategy

a) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

John DoeJohn Doe

hash(John Doe) = 6

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup

hash(Mark Fienup) = 5

Ben SchaferBen Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 5

hash(Sarah Diesburg) = 6

Hash functionHash Table with Linear Probing Hash Table with Quad. Probing

00

11

22

33

44

55

66

77

b) Explain how deletions in an open-address hash table are handled.

Question 7. (15 points) The general idea of Quick sort is as follows:

� Select a “random” item in the unsorted part as the pivot

� Rearrange (partitioning) the unsorted items such that:

� Quick sort the unsorted part to the left of the pivot

� Quick sort the unsorted part to the right of the pivot

Explain why the best-case performance is O(n log2 n).

Spring 2014 Name: ______________________

4

Pivot

Pivot Index

ItemAll items < to Pivot All items >= to Pivot

Question 8. (15 points) Recall the general idea of Heap sort which uses a min-heap (class BinHeap) to sort a list.

(BinHeap methods: BinHeap(), insert(item), delMin(), isEmpty(), size())

1. Create an empty heap

Generl idea of Heap sort:

2. Insert all n list items into heap

3. delMin heap items back to list in sorted order

myList sorted list with n items

myList unsorted list with n items

heap with

n items

a) If we insert all of the list elements into a min-heap, what item would we easily be able to determine?

b) Complete the code for heapSort so that it sorts in descending order

from bin_heap import BinHeap
def heapSort(myList):

 # Create an empty heap
 myHeap = BinHeap()

c) Determine the overall O() for heap sort and justify your answer.

Spring 2014 Name: ______________________

5

