Data Structures Lecture 16 Name:

2. All simple sorts consist of two nested loops where:
e the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing ‘

by one in size each iteration of the outer loop.
* the inner loop's job is to do the work to extend the sorted part's size by one.

Initially, the sorted part is typically empty. The simple sorts differ in how their inner loops perform their job.

Selection sort is an example of a simple sort. Selection sort’s inner loop scans the unsorted part of the list to find the
maximum item. The maximum item in the unsorted part is then exchanged with the last unsorted item to extend the

sorted part by one item.
At the start of the first iteration of the outer loop, initial list is completely unsorted:

Unsorted Part Empl)if Forted Part

0!12345678i
25135]20]40]90]60] 10] 50| 45|

The inner loop scans the unsorted part and determineg that the index of the maximum item, maxIndex = 4.

Unsorted Part/'%‘ ' Sorted Part

0 1 2 3 4 7 \3,,,,.

25(3520] 40 |90) 60 10 50 | 45
1

maxindex = 4 lastUnsortedindex = 8

After the inner loop (but still inside the outer loop), the item at maxIndex is exchanged with the item
at lastUnsortedIndex. Thus, extending the Sorted Part of the list by one item.

Unsorted Part v Sorted Part
0 1 2 3 4 ? S\go' s
Losf-[25]35]20] 404 10 561 00

maxIndex =4 lastUnsortedIndex = §
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3. Bubble sort is another example of a simple sort. Bubble sort’s inner loop scans the unsorted part of the list
comparing adjacent items. If it finds adjacent items out of order, then it exchanges them, This causes the largest
item to “bubble” up to the “top” of the unsorted part of the list.

At the start of the first iteration of the outer loop, initial list is completely unsoited:

Unsorted Part Empty Sorted Part

0 t 2 3 4 5 6 7 8
25135120/ 40,90:60] 10| 50| 45

The inner loop scans the unsorted part by comparing adjacent items and exchanging them if out of order.

01 2 3 4 5 6 7 8
25135{20({40]90|60]10]| 50|45

in order, so don't exchange

out of order, so exchange
0 1 2 3 4 5 6 7 8
25020135140 90{60] 10| 50| 45

in order, so don't exchange
in order, so don't exchange

out of order, so exchange
0 1 2 3 4 5 6 7 8
25120(35140{60]90]10}50]45

out of order, so exchange
0 1 2 3 4 5 6 7 8
25]20] 35| 40{ 60| 10] 90| 50] 45]
-

out of order, so exchange
0 1 2 3 4 5 6 7 8
25[20135/40|60]10}50]90] 45

out of order, so exchange
0 1 2 3 4 5 6 7 8
2512013514060} 10]50]45] 90

Unsorted Part
fsorte _ ar Sorted Part

|
Tl/ lastUnsortedIndex = 8

After the inner loop (but still inside the outer loop), there is nothing to do since the exchanges
occurred inside the inner loop.

a) What would be the worst-case big-oh of bubble sort?

b) What would be true if we scanned the unsorted part and didn’t need to do any exchanges?
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4. Another simple sort is called insertion sort. Recall that in a simple sort:
* the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing
by one in size each iteration of the outer loop.
* the inner loop's job is to do the work to extend the sorted part's size by one.

After several iterations of insertion sort’s outer loop, a list might look like:

Sorted Part Unsorted Part
0 L 2C3C 4o [3C LT 8
10 | 20| 38" 40 | 451581287 50{ 90| o o e

=

[25,
In insertion sort the inner-loop takes the "first unsorted item" (25 at index 6 in the above example) and "inserts" it
into the sorted part of the list "at the correct spot." After 25 is inserted into the sorted part, the list would look like:

Sorted Part Unsorted Part

0 1 2 3 4 5 § 3
10 | 20| 25|35] 40|45/ 60 ,(;’900--
0
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Code for insertion is given below:

def insertionSort (myList): 1 _ I
"M"TRearranges the items in mylList so tggy areji ascendlng order“""

,—_.,-...-

for firstUnsortedindex in range(l,len{ myL st T%g\)
itemTolnsert = mylList{firstUnsortedin ex

testIndex = firstUnsortedIndex - 1

while testIndex >= 0 and myList[testIndex] > itemToInsert:
myList[testIndex+l] = myList[testIndex]
testindex = testlIndex - 1

# Insert the itemToInsert at the correct spot
myList[testIndex + 1] = itemTolnsert
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b} What initial airangement of items causes the is the overall worst-case performance of insertion sort?
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d) What is the worst-case O( ) notation for the number of ifem comparisons? Q ( 2 "?)
€) What initial arrangement of items causes the is the overall best-case performance of insertion sort?
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f) What is the best-case O( ) notation for insertion sort?
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