Data Structures Lecture 17 - Name:

1. So far, we have looked at simple sorts consisting of nested loops. The # of inner loop iterations n*(n-1)/2 is O(n?).
Consider using a rm'n—heap to sort a list. (methods: BinHeap (), insert(item), delMin (), isEmpty (), size({))

a) If we insert all of the list elements into a min-heap, what would we easily be able to determine?

Generl idea of Heap sort: myList unsorted list with n items Y
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'b) What is the overall O() for heap sort‘? @ ( \
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2. Another way to do better than the simple sorts is to employ divide-and-conquer (e.g., Merge sort and Quick Sort).
Recall the idea of Divide-and-Conquer algorithms. Solve a problem by:

e dividing problem into smaller problem(s) of the same kind

* solving the smaller problem(s) recursively '

* use the solution(s) to the smaller problem(s) to solve the original problem

In general, a problem can be solved recursively if it can be broken down into smaller problems that are identical in
structure to the original problem.

a) What determines the “size” of a sorting problem? & (‘%@ o {j ( (} 4,

b) How might we break the original problem down into smaller problems that are identical?
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c) What base case(s) (i.e., frival, non-recursive case(s)) might we encounter with recursive sorts?
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d) How do you combine the answers to the smaller problems to s?;lve the original sorting problem?
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e) Consider why a recursive sort niight be more tfaliﬁcwnt Assume that I had a simple n? sorting algorithm with

= 100, then there is roughly 100%/ 2 or 5,000 amount of work. Suppose I split the problem down into two smaller

sortmg ploblems of size 50.
+ IfIrun the n? algorithm on both smaller problems of size 50, then what would be the approximate amount of

work? 5 0 § d) [ s
o+ = o -
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o If1 further solve the problems of size 50 by splitting each of them into two problems of size §5 then what would
be the approximate amotnt of work? 2% Y e
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3. The general idea merge sort is as follows. Assume “n” items to sort.

Split the unsorted part in half to get two smaller sorting problems of about equal size = n/2

Solve both smaller problems recursively using merge sort

“Merge” the solutions to the smaller problems together to solve the original sorting problem of size n

- L] -

Unsorted Part

a) Fill in the merged Sorted Part in the diagram. 0 1 2 3 4 5 6
b) Describe how you filled in the sorted part in the above example? Leol3s]10]40]45]20]25]s0]
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4. Merge sort is substantially faster than the simple sorts, Let’s analyze the number of comparisons and moves of
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merge sprt. Assume “n” items to sort.
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a) On each level of the above diagram write the WORST-CASE number of comparisons and moves for that level.

b) What is the WORST-CASE total number of comparisons and moves for the whole algorithm (i.e., add all levels)?

¢) What is the big-oh for worst-case? O ( /l ( Qﬁ L /\)
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S, Quick sort general idea is as follows. (, { _ resd s

¢ Select a “random” item in the unsorted part as the pivor ‘% Pivot Index )
Rearrange (partitioning) the unsorted items such that: All items < to Pivot Eggt All items >= to Pivot
Quick sort the unsorted part to the left of the pivot

* Quick sort the unsorted part to the right of the pivot

a) Given the following partition function which returns the index of the pivot after this rearrangement, complete
the recursive quicksortHelper function. def quicksort(lyst):

def partition(lyst, left, right):
# Find the pivot and exchange it wit
middle = {left + right) // 2

Pivot = lystimiddle] & 1|,,‘f‘ \ i
lyst[middle] = lystfright] P (-
Tystiriyg

gquicksortHelper (lyst, 0, len{lyst} - 1}

def qﬁicksortHelper(lyst, left, right}):

EP | ‘e“gﬂf“ < ﬁfﬁé%:

rgtre—=—pi-vote—

7 set boundary point to first position ' pivs lalley = pretibion (st et riff
# Move items less than pivot to the left
for index in range(leeiftl,)lzight?: © e gTR) (,(f“fdr]l l( (PL/((‘(‘“( léP f!l’ﬂjﬂtﬂ%
if lyst(index} < pivot: _
temp = lyst[index} ( N :
li?ig[indZi} inl}ef}sit [boundary} ?u(c Cfuff'[{ﬂ{ljlf lys.{ | ﬂﬂ!’ﬁ%fﬂﬁlpf" ’ﬁléﬁ(\
lyst[boundary] = temp 14

boundary += 1
# Exchange the pivot item and the boundary item
temp = lyst([boundary]

lyst[boundaryl = lyst[ri‘;r?{j] \\/ g‘.{ EN\QHD g 'Yq[ n(/pm?l:(

lyst{right] = temp

return boundary lyq{, [:é%«‘hﬂ?'&fﬁ/i) = \Q“ﬂf{

b) For the list

f irst call to partition and determine the resulting list, and value returned.

below, trace
‘ % @5 7 8 left  right index boundary pivot
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lyst:
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b) What initial arrangement of the list would cause partition to perform the most amount of work?

c) Let “n” be the number of items between left and right. What is the worst-case O( ) for parntmn? Pﬂ,,;,_{ L
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d) What would be the overall, worst-case O( ) for Quick Sort?
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