Test 2 will be Thursday November 3 in class. It will be closed-book and notes, except for one 8.5” x 117
sheet of paper containing any notes that you want. (Yes, you can use both the front and back of this piece of

paper.) Plus, you can use your Python Summary handout.

The test will cover Chapters 4 and 5. The following topics (and maybe more) with be covered:

Chapter 4; Recursion .
Recursive functions: base-case(s), recursive case(s), fracing recursion via run-iime stack or recursion tree,
“infinite recursion” '

Costs and benefits of recursion
Recursive examples: countDown, OrderedList _ str method, fibonacci, factorial, binomial coefficient

Divide-and-Conguer technigue of solving a problem. Examples: fibonacci, coin-change problem
Backtracking technique of solving a problem: Examples: cetn-change problem, maze (textbook)

General concept of dynamic programming solutions for recursive problems that repeatedly solve the same
- smaller problems over and over. Example fibonacci, coin-change problem, binomial coefficient

Chapter 5: Searching and Sortfing

Sequential/Linear search: code and big-oh analysis

Binary Search: code and big-ch analysis

Python List implementation (ListDict) of dictionaries and big-oh analysis

Hashing terminology: hash function, hash table, collision, load factor, chaining/closed-address/external chaining,
open-address with some rebashing strategy: linear probing, guadratic probing, primary and secondary clustering
hashing implementation of dictionaries (ChainingDict and OpenAddrHashDict) and their big-oh analysis
General idea of simple sorts

Simple sorts: selection, bubble, insertion sorts and their big-oh analysis

Advanced sorts and their big-oh analysis: heap sort, guick sort and merge sort

Spring 2016 ' Name:

Data Structures - Test 2 .
pupgs ek
Question 1, (10 points) What is printed by the following program? Output: ¥
A _'“% *e
[
def recFn(a, b): ' c‘ b 473 !
A $ 4 \ﬂ@) “’@ b
.return 100 l l : Z 7 5\ /§N/\
UTer v, M3 ” 35 b5)13
. _ NEE)
else: fkﬁg “,% r.ay \(%”!’)
return recFn{(a + 1, b - 2) + a L{ ,2 & V_M'.?;v“-’li_\ !5 "
(*+) s — 2
rege 4 = 1 bl w
print ("result =",recFn(l, 9}) ret. addr: \{)\ Initial
C(®) ai g call-frame»
b 9 | ofrecFn
(|-
ot

Question 2. (10 points) Write a recursive Python function to compute the following mathematical function, G(n):
G{n)=nforall value of n<1 .

GQ)=5ifn=2 -

G(n) = G(n-5) + G(n-3) + G{n-2) for all n values > 2.

def G(n): -

Was>2:

T\Q“(U/t’\ G(,,‘ b) .{,G(M"g)'{ @(“1)
P =
2 retern A

Q[SQ: W oaums L

!’\R(dfr\ c;h

£

Questlon 3. a) (7 points) For the ?2{2 1ecxf151ve function G(n), complete the calling-tree for G(7)

L ey e T Y

b) (2 point) What is the value of G(7)?. { -
¢) (1 point) What is the maximum helght of the run-time stack when calculating G(7) recursively? L/

Spring 2016 Name:

Question 3. The insertion sort code discussed in class is:

def insertionSort (myList): CAMTFMM.MN
for firstUnsortedIndex in range(l, len(myList)): 6;12&.ﬁ,*hw
itemTolnsert = mylist([firstUnsortedIndex] —
testTndex = firstUnsortedindex - 1 h__f J(@
while testIndex >= 0 and myList{testIndex] > itqugin'é L
myListltestIndex+l] = myList[testIndex] S

testIndex = testIndex - 1 ?' ’ _
myList [testIndex + 1] = itemTolnsert S :
Consider the following insertMergeSort code which calls the above i‘Eseft':ﬂimoziﬂs—’dft('c"odé"tWi"cé"Wi’tlT?Bﬁﬁies of aclﬁ
half of the array, and then merges the two sorted halves ;)ack together using the merge code from merge sort. R ,ﬁ_;l". 8 yf@L

def insertMergeSort(alist): ég;i
halfSize = len(alist) // 2 (A S
lefthalf = alist[: halfSize] N [Q‘%‘H}{\:l{\’
righthalf = alist[halfSize :] - 41
insertionSort (lefthalf) (éff e
insertionSort {righthalf} l_ h.”.”“.éfﬁﬁﬁéyfgﬁ” ‘ “;l&>&74

###4# BELOW IS THE MERGE CODE FROM MERGE SORT ####
i=0 ¥ index into lefthalf

j=0 # index into righthalf

k=0 # index into alist

e T A D)
N | RSV

if lefthalf[i]<righthalf{j]:
aList[k]l=lefthalf{i]
i=i+l
else:
alist[kl=righthalf{j]
j=3+1
k=k+1
while i<len(lefthalf}; # copy the remaining items from lefthalf if any
alist[ki=lefthalf[i]
i=i+1
k=k+1
while j<len{righthalf): # copy the remaining items from righthalf if any
alist(k]=righthalf[]j]
J=5+1
k=k+1

AT

while i<len{lefthalf) and j<len(righthalf}: $# compare and copy until one half runs out

Consider the following timing of insertionSort vs. insertMergesort on lists of 10000 clements.

insertionSort - at the top of page insertMergeSort - modified
Initial arrangement of list before sorting version in middle of the page
Sorted in descending order: 10000, 9999, ..., 2, 1 14.3 seconds 7.1 seconds
Already in ascending order: 1, 2, ..., 9999, 10000 0.005 seconds 0.009 seconds
Randomly ordered list of 10000 numbers 7.4 seconds 3.6 seconds

a} (10 points) Explain why insertMergesort(modified version in middle of page) out performs the original

insertionSort,

b} (10 points) In either version, why does sorting the randomly order list take about halve the time of sorting the
initially descending ordered list?

Spring 2016 Name:

Question 4. (20 points) In insertion sort the inner-loop takes the "first unsorted item" (25 at index 6 in the below
example) and "inserts" it into the sorted part of the list "at the correct spot.”

| Sorted Part | Unsorted Part
| 0 1 2 3 4 5 | 6

110 | 20| 35| 40| 45| 60|29| 50| 90| & ¢ ¢ | | |
e

In class we discussed the following insertion sort code which sorts in ascending order (smallest to largest) and builds
the sorted part on the left-hand side of the list, i .

def insei r‘Sort (myList) : gﬂg Hz/
for +UnsortedIndex in range en.tmyl
J.tem'l‘oInsert = myLJ_st{ :};é«tUnsortedIndex]
testIndex = f@[rs te fi}gie
while testIndex st{testlndex] > itemTolnsert:

myLlst[testIndex@' = myList[testiIndex]
testIndex = testIndex -{» 1 -

myList{testIndex %= 1] = itemTolInsert

For this question write a variation of the above insertion sort that:
¢ sorts in descending order (largest to smallest)
* builds the sorted part on the right-hand side of the list, t.e.,

[Unsorted Part | Sorted Part |
| 0 1 2.3 4 5§ 6 17 | 8 |
L[1 [ee« [25]4glopl6ofso[4s]35][20]10

f' s Ylealirls ﬁ?
ek

def insertionSortVariation(myList): S T ,7\ sd‘wjp/
iz

Spring 2016 Name:

Question 5. Two common rehashing strategies for open-address hashing are linear probing and quadratic probing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)? +(rehash attempt #))/2] % (hash table size), where the hash table size is
a power of 2. Integer division is used above

a) (8 points) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on lefl) and Quadratic (on right) probing.
Hash Table with Quad. Probing

quadratic
probing

Hash Table with Linear Probin Hash funetion

//*é)o Ben Schafer |%= hash(John Doe) = 7 | Ben Schafer ¥
C:?l Pae | (?mu? b el By
)2 Sare h Diespers hash{Philip East) =3 2 | Sarcl Dietd Gve
3 [Philip East 3 [Philip East /
4 hash{Mark Fienup) =6 4
5 5
6 | Mark Fienup [%; hash(Ben Schafer) =0 6 | Mark Fienup
N7~ |__John Doe 7,| John Doe

T hash(Paul Gray) = 6

hash(Sarah Diesburg) =7 Mmi;%_ “ 'L @ o _

601‘ 45e V‘QLMS‘JW 3{%‘{?}?{’” 2 howe cefﬂ ¢ ‘f«"dwié:ﬁ so ”/4"""?5

b) (7 points) E;plam why both linear and quadratic probing both suffer from primary clustering?
ha ¢ Z!(" Faos ‘! / {\ //U('w S Ate I v’l’{f’f?f"? ;;;E..;';’iéf‘“’ﬂz;

&jg

T l’? ¢ r{

5t

"{‘2;

Question 6. Recall the general idea of Heap sort which uses a min-heap (class BinHeap with methods: BinHeap (),

))) to sort a list.
(, c,f)? Ay
3. delMlin heap items back to list in sorte(d)order ‘

sorted list with n items 0 é

insert (item}, delMin{(), isEmptv(), size(

Generl idea of Heap sort: unsorted list with n items

myList

1. Create an empty heap

2. Insert all n list items into heap

myList

a) (10 points) Complete the code for heapSort so that it sorts in descending order

from bin heap import BinHeap

def heapSort (myList):

myHeap = BinHeap{) # Create an empty heap

“Pof») 1-0, Mola f‘\yl vl
m\/ueafcmg‘;;f (,41@,‘\) |

Loy iafor ia rrage (lealm y&;{) >y)w) - O
M}’Lt‘% Lr\\f@;fg - m\f,u&w &jf?@(mm((/j)([’()? !‘\)

b) (5 points) Determme the ovelall O>) for your heap sort and bneﬂy justify your answer.

O log

