Data Structures Lecture 13 Name:

[. The texthook solves the coin-change problem with the followmg code (note the “set-builder-like” notation):
{c| ¢ € coinValueList and ¢ < change}

def recMC{change, ceinvValuetist):
global backtrackingNodes
packtrackinglticdes += 1

minCoinsg = Change Results Ofl'ﬂnnillg thiS COdei
if change in coinValueList:
elsefeturn ! Change Amount: 63 Coin types: [1, 5, 10, 25]
for i in [c for ¢ in coinValueList if ¢ <= change}: Run-time: 70.689 Se?onds
numCoins = 1 + recMC{change - i, coinValuelist) Fewest number of coins &
if numCoins < minCoins;: Number of Backtracking todes: 67,716,925

minCoins = numCoins
return minCoins

I removed the fancy set-builder notation and replaced it with a simple i £-statement check:

def recMC{change, coinValuelList):
glebal backtrackingNodes
backtrackingodes += 1

minCoins = change Results of running this code:
if change in coinValueList:
return 1
else: Change Amount: 83 Coin types: [i, 5, 16, 25]
for i in coinValueList: Run-time: 45%.815 seconds .
if i <= change: Fewest number of coins 6
numCoins = 1 + recMC(change - i, coinValueList} Number of Backtracking Nodes: 67,716,925

if pumCoins < minCoins:
minCoins = numCoins
return minCoins

' 4 worfeen.
a) Why is the second version so much “faster”? d sy Z)M’\ (J @ Ao ,(ﬁm)
‘- Lo o] |
CI ‘Z’f“l/f Ko et Excoal f_!“mc}a
(%fftiféféfmjk\ f;“

b) Why does it still take a long time? p 0 &Qg o Hiia ,|i - }5) %

/

Q&@%Srm-\hihﬂ(e Fﬁ{@ﬁﬂ?bﬂ
tree

2. To speed the recursive backiracking algorithm, we can prune unpromising branches. The general recursive
backtracking algorithm for optimization problems (¢.g., fewest number of coins) looks something like:

Backtrack(recursionTreeNode p } {

for each child ¢ of p do # each ¢ represents a possible choice
if promising(c) then # ¢ is "promising” if it could lead to a better solution
if ¢ is a solution that's better than best then # check if this is the best solution found so far
best=c¢ # remember the best solution
else
Backtrack(c) # follow a branch down the tree
end if
end if
end for

} / end Backtrack

General Notes about Backtracking:

* The depth-first nature of backtracking only stores information about the current branch being explored on the
run-time stack, so the memory usage is “low” eventhough the # of recursion tree nodes might be exponential (27).

* Each node of the search-space (recursive-call) tree maintains the state of a partial solution. In general the partial
solution state consists of potentially large arrays that change little between parent and child. To avoid having
multiple copies of these arrays, a reference to a single “global” array can be maintained which is updated before
we go down to the child (via a recursive call) and undone when we backtrack to the parent.

a} For the coin-change problem, what defines the current state of a search-space tree node?

Lecture 13 Page 1

-

Data Structures Lecture 13 Name:

b) When would a “chﬂd” tree node NOT be promisi
T we gleehy Mage 4 solotion Coay Haic), F/m
‘15) It WC& ‘W ﬂ@wf\ gﬂafﬁ 3 Cahe f"m(ﬂ ((f 44%@

oo ¢ifilro ¢ baagd a moy -
3. Consider the butput of runmng the backtr ckmg code with pruning (next page) twice with a change amount of 63

cents.

Change Amount: 63 Coin types: {1, 5, 10, 25] Change Amount: 63 Coin types: [25, 10, 5, 1]
Run-time: 0.036 seconds Run—-time: 0.083 seconds

Fewest number of coins 6 Fewest number of coins 6

The number of each type of coins is: The number of each type of coins is:

number cof l-cent coins is 3 number of 25-cent ceoins is 2

number of S5-cent ceoins is ¢ number of 10~cent coins is 1

number of 10-cent ceoins is 1 number of 5-cent coins is 0

number of 25-cent ceins is 2 number of l-cent coins is 3

Number of Backtracking Nodes: 4831 Number of Backtracking Nodes: 310

a) Explain why ordeung the coins ?\Om latgest to smallest produced faster resu}ts

LQ%# 5] a @W 5 al ((¢ ¢ NS 'mgr/ w//“J .r
MO'(c.s.;' < ?J/ PV"A "/}‘7 Vf §r l/\lé}A'f’f‘ff Whlé ’/1 f “{" Q.
ﬁ Solution fiepd,

b) Forcoins of [50, 25, 12, 10, 5, 1] typical timings:

Change Amount Run-Time (seconds) Number of Tree Nodes
399 8.88 2,015,539
409 55.17 12,093,221
419 318.56 72,558,646

Why the exponential growth in run-time?

Sill a o4 C e aﬁvmﬂm’ Cd'ch "7"”0"‘)5 (A "“’/161 ‘"/Wﬂ(

4. As with Fibonacci, the coin-change problem can benefit from dynamic program since it was slow due to solving
the same problems over-and-over again. Recall the general idea of dynamic programming:

e Solve smaller problems before larger ones

e store their answers

¢ look-up answers to smaller problems when solving larger subproblems, so each problem is solved only once

a) To solve the com-change problem using dynamic programming, we need to answer the questions:

* What is the smallest problem? (9 4 Mo G,,,] (S L} an ?C’

(’ZVM7(?
+ Where do we store the awwells to the smaller problems? ((g A#ogal)
CARAPD l e T L S
“Fe,vvq(- Co S l d [1(B /
[_[(2((2(

Lecture 13 Page 2

¢ ITBJ §| AUMPDIY]

(RAALUTODUDIRREIOISqUNNISSY “SUTODRSDRDIASD
PUNOIUCTINTOS ‘IPICTSUTCHTOIDqUAU ‘2dALUTOOUOREIQIAQUNU “JuyShuRYS) yORINDPY =

{(3dALUTOUR BRI FOIDqUNNIS 2
‘SUTODISIMBIISHG 'PUNOIUOTINTOS ‘T + IBIOSSUTOSIOISCUNU

‘8dATUTOUIRHIOISAWONIUYSZUBYIADTTEWS / 2wysBunynIs T oWs) YORIIYORG =

1899 §3T IT YoAUD #

3 (SuTeDISAMaIISRY PUNCIUOTINTOS

SdALUTOOUSPHIQIDQUNNTSIY ‘SUTODISANRIIEDG UINIaI

RdALUTOOUDRIIOISGUONISSG SUTODISOMDIISAY “PUNOIUOTINTOS

suoN - dAJUTODUDeHIOISUINI S

- = SUTODISaMBIITA]
3STed = PUNOFUOTINTOS
0 = IRIOSSUTONFOISAUNU

(¢) puadde *adALuTon DRI IQISqUNU
:sadALUTOD UT UTOD IOT
[1 = adAjurcpyoegzoaaqunu

auoN = dALUTONYLEHIQISTUNNISDY

T~ = SUTODISIMDITISI]
55Ted = PUNOZUCTINTOS
G = XRIOSSUTODIOIDQUNRU
o oachAOU£Umm“ouw959a
UBYIUTODRATOS FO Apog #

UOTIBWICIUT 230238 Judrand, TeiiTur dn-395 4 [l
abu
NI UInisx
IDSTD
SETRI uUINIDI
FSUTCDASIMIIRISIC =< [+PRUANIDESUTONIOISUAU PUR PUNCIUSTINTOS IT
0 < Jwgsburyo # :9STS
snI] UIN3IDI
10 == JUYIBURYD ITTS
BgTRL UIN3IDI
10 > jugabueys 3t
P (SUTOD1SIMBIIEDY ‘PUNOIUOTINTOS ‘PRUINIDYSUTOIFOFSqUNU ‘Juyebueyd) butstucxd jop
HIRIDORY IIP PUD

2dALUTONUOPIICAIQUAONISDY ‘SUTONISOMDIIFSY PUNCIUOTINTIOS UINIDI

SdALUTODUDRHIOIBANNNISST /SUTCDISBMAILEHC ' PUNCIUOTINTOS

T =+ [x2put]adALutolyseEFOisqUINIUYa5URYSID T TRUS
adAzuTonUPRIIOIAqUOU + [] = 2dAIUTOQUSEHIQISqUNNIUYOEUBUDIST TEWS
USTIPWIAOIUT 21818 padepdn {ITm RITUD TIES 4
r9sT®
enAL = PURCIUOTINTOS
T =+ [%3putr]=dALUTONUIRTIOISqUNNTSD]
SdALUTOQUORHEIOISUNU + [] = 2dAZUTONUDETIQISQUINISD]
T+ABIOSSUTODIOIDGUNU = SUTODISIMDIISDY
ISUTODIASVMBIASIY > T + IBJOSSUTOIICIDCUAU I¢ (PUNOIUOTANTOS 3I0uU) IT
punoy ST ueTINIOS B 4 0 ~- JWYDDUBRYDISDTIRWS IFT
‘THIBIOSSUTOSIQIDUNY “ Juyabumydrsy Tews) butatwoxd It
[*eput] sadAIUuToo - Juyabueyd = Juyebury)IisTITWs
t{(sadiyuTon}usT) sburs UT XIPUT I0J

T =+ s9pONBUTNDERIINDERY
sopoNbuTyoRIINORY TRAOTH

.ﬁ@&hHCHOUEOMMMOMmQESZume ‘SUTODISSMIILSDH ﬁqﬂom:oﬂuﬁAOm ‘IRJOSSUTOSFOIDQUWIY ‘2dAIUTOSUDRIIOISCUNU ‘Juyabueyn) yovIlYoeq J2p

s (sadAizuTen ‘juyabueyd) sBUBUOUTOISATOS J9p

sapou 2917 20rds~97B1E JO IBWNU qowI] O3 BTYRIIRA buTTryoad §

0 = E9poNBuTHORIINDRY

QUWEN

€1 23037 seImonng ele(

Data Structures Lecture 13 Name:

Dynamic Programming Coin-change Algorithm:

1. Fills an array fewestCoins from 0 to the amount of change. An element of fewestCoins stores the fewest number
of coins necessary for the amount of change corresponding to its index value.

For 29-cents using the set of coin types {1, 5, 10, 12, 25, 50}, the dynamic programming algorithm would have
previously calculated the fewestCoins for the change amounts of 0, 1, 2, ..., up to 28 cents.

II. If we record the best, first coin to return for each change amount {found in the “minimum” calculation) in an
array bestFirstCoin, then we can easily recover the actual coin types to return.

fewestCoins{291 = minimum(fewestCoins[28}, fewestCoins[24], fewestCoins[19],
fewestCoins[17], fewestCoins[4])+ 1=2+1=3

a minimum for 29
given by 5-cent coin

4 17 19 2 2829,
fewestCoins! [|4 f |2 1 |4 ! I2]4 |3 T
T 1w 1™
10
25 12 %
0 12 4 9
bestFirstCoin: |0 | 112 [12] 5
12-12=0 24-12=12 | 29-5=24

Extract the coins in the solution for 29-cents from bestFirstCoin[29], bestFirstCoin[24], and bestFirstCoin[12]

b) Extend the lists through 32-cents.
0 1 234567 89 1011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
fewestCoins: {0 [1 [2[3[4 [t]2 a4 s]i]2|1fals|2]3{2]s]4]2]3 23 2]t]2]3]4[3]%]3]

e o)

- S e e,

0123456780 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
bestFirsiCoin:{ 0 {1 {1 [1o s [o [Te b Toola fialu [Fs To s a {1 Juols nol s fizfashy 1 [uls [-511 |14

e —— °j\]

¢) What coins are in the solution for 32-cents?) © | 10, (]

Lecture 13 Page 4

Data Structures Lecture 14 Name:

1. Consider the following sequential search (linear search) code:

Textbook’s Listing 5.1 Faster sequential search code
def sequentialSearch(alist, item): def linearSearch{aList, target):
" gsequential search of unorder list """ mweReturns the index of target in aList

pos = 0

found = False or -1 if target is not in aList"""

for position in range{len{alist)):

Whilitpgil:t%ggé?liSEitiﬁé not found: if target == alist([position]:
“round = True return positiecn
else: return -1

pos = pos+l

return found

a) What is the basic operation of a search? Cfo’%ﬁﬁ 1 e

b) For the following a1,ist value, which target value causes 1inearsearch to loop the fewest (“best case™)

number of times? | Q
012345678910@(()é??/

alist: | 10 {15 |28 |42 |60 {69 175 {88 |90 |93 |97

¢) For the above aList value, which target value causes linearSearch to loop the most (“worst case™) number of

times? CZ “;‘.}L(M‘ é(\}/ QM{QC‘(‘KFFPV(fefﬁ%é @C/\)

d) For a successful search (ie., target value in aList), what is the “average” number of loops? Vj,/

O)= Ocn

Textbook’s Listing 5.2 Faster sequential search code
def orderedSequentialSearch(alist, item): def linearSearchOfSortedList {targelt, aList}:
nnn gequential search of order list """ "wrnpeturns the index position of target in
pos = 0 gsorted alist or -1 if target is not in aList""?
found = False : breakOut = Faise
stop = False <= for position in range{len{alist}):
while pos < len{alist} and not found and not stop: if target <= aList[position}; :{
if alist{pos] == item: breakOut = True (v e
tound = True break
else: v
if alist[pos] > item: _ ()(4‘{ £
stop = True<<f _______ . if Qot bre?kput:
else: return -1
pes = pos+i elif target == alist{position]:
return position
return found else:
return -1

e) The above version of linear search assumes that aList is sorted in ascending order. When would this version
perform better than the original 1inearSearch at the top of the page?

Lecture 14 Page 1

Data Structures Lecture 14 Name:

2. Consider the following binary search code:

Textbook’s Listing 5.3 Faster binary search code
def ?}naEySegrch(allst, item) : def binarySearch(target, lyst):
irst =
last = len{alist)-1 nrpeturns the position of the target
found = False item if found, or -1 otherwise.™""”
. . left = 0
while. first<=last and not found:
midpoint = (first + last)//2 right = len(lyst) - 1
if alist[midpoint] == item: while left <= right:
else{fou“d = True midpoint = (left + right) // 2
if item < alist[midpoint}: 7 if target == lyst(midpoint}:
last = midpoint~1 return midpoint
else: . .
) 1 < H
first = midpoint+l elif Farqet .lyst[mldp01nt]
right = midpoint - 1
return found else:

left = midpoint + 1
return -1

a) “Trace” binary search to determine the worst-case basic total number of comparisons?

worst-case lef ‘
loop #elements ‘It o right
remaining ,7"0 \/ L2 ... mldp‘.’mf - 1»;?\ target
1 "n" [‘ 10/ O \IHOO O &jf 151'
S’A%d { (’ﬁ{ midpoint V50!
N 200
ﬁgﬁ(
[y
]
(9

b) What is the worst-case big-ch for binary search? A
) st-case big ry 0 (/@’f)z,fm) A

¢) What is the best-case big-oh for binary search? (9 (’ ()

d) What is the average-case (expected) big-oh for binary search? /
) g (expected) big ry O(’C)%m)

S i -

¢) If the list size is 1,000,000, then what is the maximun number of comparisons of list items on a successfil search?

/}2_ > 20 ﬂ'*“ff"‘?‘zﬂﬂ"ﬂ}’@)

f) If the list size is 1,000,000, then how many comparisons would you expect on an unsuccessful search?

i
\ D
Yecture 14 Page 2

Data Structures Lecture 14 ' Name:

3. Hashing Motivation and Terminology:

a) Sequential scarch of an atray or linked list follows the same search pattern for any given target value being

searched for, i.e., scans the array from one end to the other, or until the target is found.

If n is the number of items being searched, what is the average and worst case big-oh notation for a sequential search?
averagecase O(1\)] -/
worstcase O(g\) e)\

b} Similarly, binary search of a sorted array (or AVL tree) always uses a fixed search strategy for any given target

value. For example, binary search always compares the target value with the middle element of the remaining

portion of the array needing to be searched.

If » is the number of items being searched, what is the average and worst case big-oh notation for a search?

average case O ’gc) M)
worst case O(|(9@) .

Hashing tries to achieve average constant time (i.e., O(1)) searching by using the target’s value to calculate where
in the array/Python list (called the hash table) it should be located, i.e., each target value gets its own search pattern.
The translation of the target value to an array index (called the target’s home address) is the job of the hash function.
A perfect hash function would take your set of target values and map each to a unique array index.

Set of Keys Hash function Hash Table Array
John Doe hash(John Doe) =6 0
1
Philip East hash(Philip East) =3 2
3 | Philip East 3-2939
Mark Fienup hash{Mark Fienup) =5 4
5 | Mark Fiemup 3-5918
Ben Schafer hash(Ben Schafer) = 8\ 6 | John Doe 3-4567
7
8 | Ben Schafer 3-2187
9
10

a) If » is the number of items being searched and we had a perfect hash function, what is the average and worst case

big-oh notation for a search?
average case O(\)

worst case O \)

4. Unfortunately, perfect hash functions are a rarity, so in general many target values might get mapped to the same
hash-table index, called a collision.

Collisions are handled by two approaches:

* open-address with some rehashing strategy: Each hash table home address holds at most one target value. The
first target value hashed to a specify home address is stored there. Later targets getting hashed to that home
address get rehashed to a different hash table address. A simple rehashing strategy is linear probing where the
hash table is scanned circularly from the home address until an empty hash table address is found.

* chaining, closed-address, or external chaining: all target values hashed to the same home address are stored ina
data structure (called a bucket) at that index (typically a linked list, but a BST or AVL-tree could also be used).
Thus, the hash table is an array of linked list {or whatever data structure is being used for the buckets)

Lecture 14 Page 3

