Data Structures Lecturé 16 Name:

4. Another simple sort is called insertion sort. Recall that in a simple sort:
» the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing
by one in size each iteration of the outer loop.
* the inner loop's job is to do the work to extend the sorted part's size by one.

After several iterations of insertion sort’s outer loop, a list might look like:
Sorted Part Unsorted Part

0 1 253535 vddly s
10 | 20 ~’%4’0““%3§L¢§0“ 50/ 90] o o o

2

s L. - P y i e

__'\-\“- v}-\n’ 5&.

S 2 - \ . .
In insertion sort the inner-loop takes the "first unsortéd ifem” (25 at index 6 in the above example) and "inserts” it
into the sorted part of the list "at the correct spot." After 25 is inserted into the sorted part, the list would look like:

Sorted Part \} Unsorted Part

0 1 2 3 4 5 56/) Al 8
10 | 20| 25]35] 40| 45601 30]j90| o o o
e

Code for insertion is given below: S0

def insertionSori (myList):
""HRearranges the items in myList so they are in ascending order

LRIl

for firstUnsortedIndex in range{l,len(myList)):
itemToInsert = myList[firstUnsortedIindex]

testIndex = firstUnsortedindex - 1

while testIndex >= 0 and myList[testIndex} > itemTolnsert:
myhist{testIindex+l] = myList[testIndex]
testIndex = testIndex ~ 1

Insert the itemToInsert at the correct spr
myList{testIndex + 1] = itemTolnsert

a} What is the purpose of the testIndex >= 0 while-loop comparISO ép g
Malee sprs we !’zwo ro a(f i+ 4 s

b) What initial arrangement of items causes the is the overall worst-case performance of insertion sort?
Aus cond My e (nidia ({L

¢) What is the worst-case O() notation for the number of item moves?

(A")(see nerd pee)

d) What is the worst-case O () notation for the number of item comparisons? C) (A ?,) | V\

e) What initial arrangement of items causes the is the overall best case performance of insertion sort?

0 (M) l((m_ (Vﬁﬁeé g ’\ & 5((9/?(%”}1\9
& f{;()(af«ﬁ

Lecture 16 Page 4

) What is the best-case O () notation for insert.io/njsort‘?

j :
i :

Moo p o y, *%2

C \@

Move p -2+t

\fﬂ@g e (=

povrpner

(00 - o)

A ﬂ
S) ey O

€ ot ﬁ@eﬁ rep

2

Data Structures Lecture 17 Name: -

1. So far, we have looked at simple sorts consisting of nested loops. The # of inner loop iterations n*(n-1)/2 is (X1?).
Consider using a min-heap to sort a list. (methods: BinHeap (), insert(item), delMin(), isEmpty(), size())

Y. N
a) If we insert all of the list elements into a min-heap, what would we easily be able to dgtéx}mine? Mmia o={
| (U g

myList unsorted list with n items

1. Crea;:\ 2;1431;;);;63%%2 &(ezf () L : é

General idea of Heap sort:

_ {

2. Insert all n list items into heap _ o S .
foe e myList é)G“k%ﬁfQ_*‘ Dheap with ¥
MY{w\eq y - !‘agg,mv{’ (! “{t”/ﬂ) ‘ - nitems x» (3

LY

3. delMin heap items back to list in sorted order éd ‘ $)
forinded in range (ea(i)
0, 1NEOE N range(fea(Ay

myLi1s Y lé.' a‘@{sor’{ed list with n items N

myLOgE g ﬁ@wjm:: ﬁ\-yé{g%g@j Men() @-(“ @%’4)

b) What is the (5ve all f)() for heap soft?
oo

A
2, Another way to do be(tjtgt) tYTan the simple sorts is to employ divide-and-conquer (e.g., Merge sort and Quick Sort).
Recall the idea of Divide-and-Conquer algorithms. Solve a problem by:
o dividing problem into smaller problem(s) of the same kind
e solving the smaller problem(s) recursively
¢ use the solution(s) to the smaller problem(s) to solve the original problem

In general, a problem can be solved recursively if it can be broken down into smaller problems that are identical in
structure to the original problem. /
. v] b \ ,
a) What determines the “size” of a sorting problem? 6 {4-C c;ﬂ[l 18 ”/ et "1*7 $e Q@‘{{?y
. o “ I,ﬂ? t
b) How might we break the original problem down into smaller problems that are identical?

sl Vi in helb
N T

¢) What base case(s) (i.e., trival, non-recursive case(s)) might we encounter with recursive sorts?

lﬁv’*i’aé sie ! D 0 avo
Glreafy o f

d) How do you combine the afiswers to the smaller problems to solve the original sorting problem?
50 7] [(5o
B
“¢) Consider why a recursive sort might be more efficient. “Assurie that I had a simple n sorting algorithm with
n = 100, then there is roughly 100° / 2 or 5,000 amount of work. Suppose I split the problem down into two smaller
sorting problems of size 50, ')
o HIrun thézz/?;lgorithm on both smaller proglems of size 50, then what would be the approximate amount of

work? 7 5 N
50 AP S
"“"f)‘ < r”“‘"{lj’“ - S Qa o é T,

L2

» If I further solve the problems of size 50 by splitting each of them into two problems of size 25, then what would

be the approximate amount of work? w7 =
v 25% 0 g8t Lt e
e e LD 0 D8 9y 1257
¢ ¢ & 4 - Lecture 17 Page 1

Data Structures Lecture 17 Name:

3. The general idea merge sort is as follows. Assume “n” items to sort.
Split the unsorted part in half to get two smaller sorting problems of about equal size = n/2

Solve both smaller problems recursively using merge soit
e “Merge” the solutions to the smaller problems together to solve the original sorting problem of size n

Unsorted Part

-2

a) Fill in the merged Soited Part in the diagram.

0 1 2 3 4 s 7
[60]35] 10]40] 45| 20] 25] 50]

b) Describe how you filled in the sorted part in the above example?

K IQ ‘!/VNQQ&{ (5() § nﬂﬂ@% e‘g F\e’y { Lf ?k% Unsorted Left Half Unsorted Right Half

Nexd Right | nextSocted all stacting at @ CooT3s 0] 4] [4sT20]25] 50] »
¢ Qm)@ art. ﬁ{)fﬂfﬂl‘ Q‘—F‘{« ,‘Nm 'F(A o I{MPJF | ‘,D SortedLiﬁ Half Sorted }‘llgh(tdl-i':lf
o ALyt fglﬁéf{ ;ﬁﬂﬁﬁ fo e if*t@ w’],{}{) (;ij |100|315|420|§ﬂ 1530';5[;5'5301
Move gﬂiﬁ”g”’ “‘{’C? ﬂé}f‘!"ng!ﬁ&é 5590‘! €) N SOrtedPaxj A

Soed é@g}! \ ”ln(,wemm £ e r} ar ﬁe.vf/x):
&agm B oA \é‘%‘fé’\l@ lS f:»“iawj i(xt ‘MH) !ts"f HD|9‘G1Q3H)|‘W‘M%dé@f

™y / of 4 (2
4, \/Iel ge S(%‘t tl%» subs‘canﬁallﬁaétstel thginﬂ?lé}gﬁn eisfoﬁs et’ sgﬁgléizg }ﬁnizr%be{: ng compalggﬁs and Iﬁ!ovgs off

L1

merge sort. Assume “n” items o sort.

Compares | Unsorted size 0 .) ||. # Moves .
0, v N ¥
(Unsorted size ni2 - I % Unsorted size n/2 ' ;
. — .)
O N\ N\ A
[m P m | [o | [w4 ! / _
. 4 hd s Q? !y_ m
L L]

2]

AX ’CM??/;@\

"N ¥logun

| Sorted size.n/2 I | Sorted size w2

4 . 2\ I

H Y
<V\ [) | e 1] A /@%M

a) On each level of the above diagram write the WORST-CASE number of comparisons and moves for that level.

b) What is the WORST-CASE total number of comparisons and moves for the whole algorithm (i.e., add all levels)?
Compw% i F\)@e)@ yhovey, LA k‘/c)f)f;,/’\

¢) What is the big-oh for worst-case? ,}) ra
y)
(A /) / 2, e@“"’\)

Lecture 17 Page 2

Data Structures Lecture 17 Name:

5. Quick so_rr general idea is as follows. | o) A
¢ Select a “random” 1tem in the unsorted part as the pzvot ad PWOF Index A 74’)
. Reanange (par tmonmg) the unsorted items such that: All items < to Pivot ﬁ é‘r’gt All items >= to Pivot

e Quick sort the unsorted part to the left of the pivot . — o= —

°

Quick sort the unsorted part to the right of the pivot

— o SN

!

a) Given the following partition function which returns the index of the pivot after this rearrangement, complete
the recursive quicksortielper function.

def guicksort(lyst}:

def partition{lyst,

left, right):
Find the pivot and exchange it with the last item
middle = {left + right) // 2 .
pivot = lystimiddle]
Llyst [middle] = lyst[right]
lyst{right] = pivot
Set boundary point to first pesition
boundary = left
Move items less than pivot to the left
for index in range({left, right):
if lyst[index} < pivot:
temp = lyst[index}
lystiindex] = lyst[boundaryl
lystiboundary] = temp
boundary += 1
Exchange the pivot item and the boundary item
temp = lyst{boundary]
lyst [boundary] = lyst[right]
lyst[right}] = temp
return boundary

D, len(lyst) - 1}

\

def qu1cksortHelper{lyst, left, right):

\P !QP{QV\MM

}SW of T QQ@)%" e P)"}(%fbaﬁ(\{ff Q@f f’ﬁi')}
(wa«,[r.so,«{ He (flw (ysf left wa%mﬁ,,/

i{ uey o, b g[e{é) T {’ {1 5}‘; g:w(;{if a ef%g@%f i_w?ea;’f)

quicksortHelper({lyst,

b) For the list below, trace the first call to partition and determine the resulting list, and value returned.

0 1 2 3 4 5 6 7 8 left right index boundary pivot
lyst: | 54 126 {93 |17 | 507] 31 |44 |55 | 207 0 8
sy o

b) What initial arrangement of the list would cause partition to perform the most amount of work?

¢) Let “n” be the number of items between left and right. What is the worst-case O() for partition?

Lecture 17 Page 3

