Data Structures Lecturé 16 Name:

4. Another simple sort is called insertion sort. Recall that in a simple sort:
» the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing
by one in size each iteration of the outer loop.
* the inner loop's job is to do the work to extend the sorted part's size by one.

After several iterations of insertion sort’s outer loop, a list might look like:
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In insertion sort the inner-loop takes the "first unsortéd ifem” (25 at index 6 in the above example) and "inserts” it
into the sorted part of the list "at the correct spot." After 25 is inserted into the sorted part, the list would look like:

Sorted Part \} Unsorted Part
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Code for insertion is given below: S0

def insertionSori (myList):
""HRearranges the items in myList so they are in ascending order

LRIl

for firstUnsortedIndex in range{l,len(myList)):
itemToInsert = myList[firstUnsortedIindex]

testIndex = firstUnsortedindex - 1

while testIndex >= 0 and myList[testIndex} > itemTolnsert:
myhist{testIindex+l] = myList[testIndex]
testIndex = testIndex ~ 1

# Insert the itemToInsert at the correct spr
myList{testIndex + 1] = itemTolnsert

a} What is the purpose of the testIndex >= 0 while-loop comparISO ép g
Malee sprs we !’zwo ro a( f i+ 4 s

b) What initial arrangement of items causes the is the overall worst-case performance of insertion sort?
Aus cond My e (nidia ({L

¢) What is the worst-case O( ) notation for the number of item moves?

(A" )(see nerd pee)

d) What is the worst-case O () notation for the number of item comparisons? C) ( A ?,) | V\

e) What initial arrangement of items causes the is the overall best case performance of insertion sort?
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) What is the best-case O () notation for insert.io/njsort‘?
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1. So far, we have looked at simple sorts consisting of nested loops. The # of inner loop iterations n*(n-1)/2 is (X1?).
Consider using a min-heap to sort a list. (methods: BinHeap (), insert(item), delMin(), isEmpty(), size())

Y. N
a) If we insert all of the list elements into a min-heap, what would we easily be able to dgtéx}mine? Mmia o={
| (U g

myList unsorted list with n items

1. Crea;:\ 2;1431;;);;63%%2 &(ezf () L : é

General idea of Heap sort:

_ {

2. Insert all n list items into heap _ o S .
foe e myList é)G“k%ﬁfQ_*‘ Dheap with ¥
MY{w\eq y - !‘agg,mv{’ ( ! “{t”/ﬂ) ‘ - nitems x» (3
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3. delMin heap items back to list in sorted order éd ‘ $ )
forinded in range (ea( i)
0, 1NEOE N range(fea( Ay

myLi1s Y lé.' a‘@{sor’{ed list with n items N

myLOgE g ﬁ@wjm:: ﬁ\-yé{g%g@j Men( ) @-( “ @%’4 )

b) What is the (5ve all f)() for heap soft?
oo

A
2, Another way to do be(tjtgt) tYTan the simple sorts is to employ divide-and-conquer (e.g., Merge sort and Quick Sort).
Recall the idea of Divide-and-Conquer algorithms. Solve a problem by:
o dividing problem into smaller problem(s) of the same kind
e solving the smaller problem(s) recursively
¢ use the solution(s) to the smaller problem(s) to solve the original problem

In general, a problem can be solved recursively if it can be broken down into smaller problems that are identical in
structure to the original problem. /
. v ] b \ ,
a) What determines the “size” of a sorting problem? 6 {4-C c;ﬂ[ l 18 ”/ et "1*7 $e Q@‘{{?y
. o “ I,ﬂ? t
b) How might we break the original problem down into smaller problems that are identical?

sl Vi in helb
N T

¢) What base case(s) (i.e., trival, non-recursive case(s)) might we encounter with recursive sorts?

lﬁv’*i’aé sie ! D 0 avo
Glreafy o f

d) How do you combine the afiswers to the smaller problems to solve the original sorting problem?
50 7] [ (5o
B
“¢) Consider why a recursive sort might be more efficient. “Assurie that I had a simple n sorting algorithm with
n = 100, then there is roughly 100° / 2 or 5,000 amount of work. Suppose I split the problem down into two smaller
sorting problems of size 50, ' )
o HIrun thézz/?;lgorithm on both smaller proglems of size 50, then what would be the approximate amount of

work? 7 5 N
50 AP S
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» If I further solve the problems of size 50 by splitting each of them into two problems of size 25, then what would

be the approximate amount of work? w7 =
v 25% 0 g8t Lt e
e e LD 0 D8 9y 1257
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3. The general idea merge sort is as follows. Assume “n” items to sort.
Split the unsorted part in half to get two smaller sorting problems of about equal size = n/2

Solve both smaller problems recursively using merge soit
e “Merge” the solutions to the smaller problems together to solve the original sorting problem of size n

Unsorted Part

-2

a) Fill in the merged Soited Part in the diagram.

0 1 2 3 4 s 7
[60]35] 10]40] 45| 20] 25] 50]

b) Describe how you filled in the sorted part in the above example?
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merge sort. Assume “n” items o sort.

# Compares | Unsorted size 0 . ) ||. # Moves .
0, v N ¥
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a) On each level of the above diagram write the WORST-CASE number of comparisons and moves for that level.

b) What is the WORST-CASE total number of comparisons and moves for the whole algorithm (i.e., add all levels)?
Compw% i F\)@e)@ yhovey, LA k‘/c)f)f;,/’\

¢) What is the big-oh for worst-case? ,}) ra
y )
(A / ) / 2, e@“"’\)
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5. Quick so_rr general idea is as follows. | o ) A
¢ Select a “random” 1tem in the unsorted part as the pzvot ad PWOF Index A 74’ )
. Reanange (par tmonmg) the unsorted items such that: All items < to Pivot ﬁ é‘r’gt All items >= to Pivot

e Quick sort the unsorted part to the left of the pivot . — o= —

°

Quick sort the unsorted part to the right of the pivot

— o SN

!

a) Given the following partition function which returns the index of the pivot after this rearrangement, complete
the recursive quicksortielper function.

def guicksort(lyst}:

def partition{lyst,

left, right):
# Find the pivot and exchange it with the last item
middle = {left + right) // 2 .
pivot = lystimiddle]
Llyst [middle] = lyst[right]
lyst{right] = pivot
# Set boundary point to first pesition
boundary = left
# Move items less than pivot to the left
for index in range({left, right):
if lyst[index} < pivot:
temp = lyst[index}
lystiindex] = lyst[boundaryl
lystiboundary] = temp
boundary += 1
# Exchange the pivot item and the boundary item
temp = lyst{boundary]
lyst [boundary] = lyst[right]
lyst[right}] = temp
return boundary

D, len(lyst) - 1}

\

def qu1cksortHelper{lyst, left, right):

\P !QP{QV\MM
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quicksortHelper({lyst,

b) For the list below, trace the first call to partition and determine the resulting list, and value returned.

0 1 2 3 4 5 6 7 8 left  right index boundary pivot
lyst: | 54 126 {93 |17 | 507] 31 |44 |55 | 207 0 8
sy o

b) What initial arrangement of the list would cause partition to perform the most amount of work?

¢) Let “n” be the number of items between left and right. What is the worst-case O( ) for partition?
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