1. There are two general approaches for traversing a graph from some starting vertex \(s \):

- **Depth First Search (DFS)** where you explore as deeply into the graph as possible. If you reach a “dead end,” we backtrack to the deepest vertex that allows us to try a different path.
- **Breadth First Search (BFS)** where you find all vertices a distance 1 (directly connected) from \(s \), before finding all vertices a distance 2 from \(s \), etc.

What data structure would be helpful in each type of search? Why?

a) Breadth First Search (BFS):

b) Depth First Search (DFS):

2. On the next page is the textbook’s edge, vertex, and graph implementations.

a) How does this graph implementation maintain its set of vertices?

b) How does this graph implementation maintain its set of edges?

3. Assuming a graph \(g \) containing the word-ladder graph from lecture 26, on the diagram trace the **bfs** algorithm by showing the value of each vertex’s **color**, **predecessor**, and **distance** attributes?
Lecture 26

File: graph_algorithms.py

```python
from graph import Graph
from vertex import Vertex
from linked_queue import LinkedQueue

def bfs(g, start):
    start.setDistance(0)
    start.setPred(None)
    vertQueue = LinkedQueue()
    vertQueue.enqueue(start)
    while (vertQueue.size() > 0):
        currentVert = vertQueue.dequeue()
        for nbr in currentVert.getConnections():
            if (nbr.getColor() == 'white'):
                nbr.setColor('gray')
                nbr.setDistance(currentVert.getDistance()+1)
                nbr.setPred(currentVert)
                vertQueue.enqueue(nbr)
        currentVert.setColor('black')
```

File: vertex.py

```python
class Vertex:
    def __init__(self, key, color = 'white',
                 dist = 0, pred = None):
        self.id = key
        self.connectedTo = {}
        self.color = color
        self.predecessor = pred
        self.distance = dist
        self.discovery = 0
        self.finish = 0

def addNeighbor(self, nbr, weight=0):
    self.connectedTo[nbr] = weight

def __str__(self):
    return str(self.id) + ' connectedTo: ' + str(
        [x.id for x in self.connectedTo])

def getConnections(self):
    return self.connectedTo.keys()

def getId(self):
    return self.id

def getWeight(self, nbr):
    return self.connectedTo[nbr]

def getPred(self):
    return self.predecessor

def getPred(self, newPred):
    self.predecessor = newPred

def getDiscovery(self):
    return self.discovery

def setDiscovery(self, newDiscovery):
    self.discovery = newDiscovery

def getFinish(self):
    return self.Finish

def setFinish(self, newFinish):
    self.finish = newFinish

def getDistance(self):
    return self.distance

def setDistance(self, newDistance):
    self.distance = newDistance
```

File: graph.py

```python
from vertex import Vertex

class Graph:
    def __init__(self):
        self.vertList = {}
        self.numVertices = 0

def addVertex(self, key):
    if key not in self.vertList:
        self.numVertices = self.numVertices + 1
        newVertex = Vertex(key)
        self.vertList[key] = newVertex
        return newVertex

def getVertex(self, n):
    if n in self.vertList:
        return self.vertList[n]
    else:
        return None

def __contains__(self, n):
    return n in self.vertList

def addEdge(self, f, t, cost=0):
    if f not in self.vertList:
        nv = self.addVertex(f)
    if t not in self.vertList:
        nv = self.addVertex(t)
    self.vertList[f].addNeighbor(
        self.vertList[t], cost)

def getVertices(self):
    return self.vertList.keys()
```

File: graph_algorithms.py

```python
from graph import Graph
from vertex import Vertex
from linked_queue import LinkedQueue

def bfs(g, start):
    start.setDistance(0)
    start.setPred(None)
    vertQueue = LinkedQueue()
    vertQueue.enqueue(start)
    while (vertQueue.size() > 0):
        currentVert = vertQueue.dequeue()
        for nbr in currentVert.getConnections():
            if (nbr.getColor() == 'white'):
                nbr.setColor('gray')
                nbr.setDistance(currentVert.getDistance()+1)
                nbr.setPred(currentVert)
                vertQueue.enqueue(nbr)
        currentVert.setColor('black')
```
4. Section 7.5 uses recursion and the run-time stack to implement a DFS traversal. The DFSGraph uses a time attribute to note when a vertex is first encountered (discovery attribute) in the depth-first search and when a vertex is backtracked through (finish attribute). Consider the graph for making pancakes where vertices are steps and edges represent the partial order among the steps.

![Diagram of pancake-making steps](image)

- 3/4 cup "milk"
- 1 "egg"
- 1 Tbl "oil"
- 1 cup "flour"
- "mix" the batter
- "pour" 1/2 cup of batter
- "heat" griddle
- "turn" when bubbly
- "eat"

a) Assume (why is this a bad assumption???) that the for-loops always iterate through the vertices alphabetically (e.g., "eat", "egg", "flour", ...) by their id. Write on the above graph the discovery and finish attributes assigned to each vertex by executing the dfs method?

```python
from graph import Graph
class DFSGraph(Graph):
    def __init__(self):
        super().__init__()
        self.time = 0

    def dfs(self):
        for aVertex in self:
            aVertex.setColor('white')
            aVertex.setPred(-1)
        for aVertex in self:
            if aVertex.getColor() == 'white':
                self.dfsvisit(aVertex)

    def dfsvisit(self, startVertex):
        startVertex.setColor('gray')
        self.time += 1
        startVertex.setDiscovery(self.time)
        for nextVertex in startVertex.getConnections():
            if nextVertex.getColor() == 'white':
                nextVertex.setPred(startVertex)
                self.dfsvisit(nextVertex)
        startVertex.setColor('black')
        self.time += 1
        startVertex.setFinish(self.time)
```

b) A topological sort algorithm can use the dfs discovery and finish attributes to determine a proper order to avoid putting the "cart before the horse." For example, we don't want to "pour ½ cup of batter" before we "mix the batter", and we don't want to "mix the batter" until all the ingredients have been added. Outline the steps to perform a topological sort.
5. Consider the following directed graph (diagraph).

Dijkstra’s Algorithm is a greedy algorithm that finds the shortest path from some vertex, say \(v_0 \), to all other vertices. A greedy algorithm, unlike divide-and-conquer and dynamic programming algorithms, DOES NOT divide a problem into smaller subproblems. Instead a greedy algorithm builds a solution by making a sequence of choices that look best ("locally" optimal) at the moment without regard for past or future choices (no backtracking to fix bad choices). Dijkstra's algorithm builds a subgraph by repeatedly selecting the next closest vertex to \(v_0 \) that is not already in the subgraph. Initially, only vertex \(v_0 \) is in the subgraph with a distance of 0 from itself.

a) What would be the order of vertices added to the subgraph during Dijkstra’s algorithm?

\[v_0, \]

b) What greedy criteria did you use to select the next vertex to add to the subgraph?

c) What data structure could be used to efficiently determine that selection?

d) How might this data structure need to be modified?