
Data Structures - Test 1

Question 1. (4 points) Consider the following Python code.

for i in range(n):

 for j in range(n*n):

 print (i, j)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

i = 1

while i < n:

 for j in range(n):

 print(j)

 i = i * 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):

 for i in range(n):

 doSomething(n)

 doMore(n)

def doSomething(n):

 for k in range(n):

 print(k)

def doMore(n):

 for k in range(n):

 print(k)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (8 points) Suppose a Ο (n3) algorithm takes 10 seconds when n = 1,000. How long would you expect

the algorithm to run when n = 10,000?

Question 5. (5 points) Why should any method/function having a "precondition" raise an exception if the

precondition is violated?

Fall 2013 Name: ______________________

1

Question 6. Consider the following FIFO (First-In-First-Out) Queue implementation utilizing a Python list:

Recall that a queue is a linear data structure that allows adding new items at the rear and removing items from the

front. One possible implementation of a queue would be to use a built-in Python list to store the items such that

� the rear item is always stored at index 0,

� the front item is always at index len(self._items)-1 or -1

 'd' 'c' 'b' 'a'

0 1 2 3

 _items:

Python List Object

front

Queue Object

rear

a) (8 points) Complete the big-oh O (), for each Queue operation, assuming the above implementation. Let n be

the number of items in the Queue.

sizedequeueenqueueisEmpty

b) (10 points) Complete the method for the dequeue operation including the precondition check.

 def dequeue(self):

 """Removes and returns the front item of the queue

 Precondition: the queue is not empty.

 Postcondition: front item is removed from the queue and returned"""

c) (7 points) Suggest an alternate Queue implementation to speed up some of its operations.

Fall 2013 Name: ______________________

2

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 9

15 10

114 20 5030

300 125 117

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 2 3 4 5 6 7 8 9 100

 not
used 9 15 10 114 20 30 50 300 125 117

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (7 points) What would the above heap look like after inserting 12 and then 25 (show the changes on above tree)

c) (3 points) What is the big-oh notation for inserting a new item in the heap?

Now consider the delMin operation that removes and returns the minimum item.

 9

15 10

114 20 5030

300 125 117

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 2 3 4 5 6 7 8 9 100

 not
used 9 15 10 114 20 30 50 300 125 117

Python List actually used
to store heap items

d) (2 point) What item would delMin remove and return from the above heap?

e) (7 points) What would the above heap look like after delMin? (show the changes on above tree)

f) (3 points) What is the big-oh notation for delMin?

Fall 2013 Name: ______________________

3

Question 8. The textbook’s unordered list ADT uses a singly-linked list implementation. I added the _size and

_tail attributes:

data next data next data next data next

_head

 _tail

_size 4

'w' 'a' 'y' 'c'

UnorderedList Object

a) (15 points) The insert(position, item) method adds the item to the list at the specified position.

Unlike the textbook’s implementation, ASSUME that the list may contain duplicate items!!! The precondition is

that position is a nonnegative integer. If position is 0, then add it to the head of the list. If position is _size

or bigger, then add it to the tail of the list. Complete the insert(position, item) method code including the

precondition check.

b) (10 points) Assuming the unordered list ADT described above that allows duplicate items. Complete the

big-oh O () for each operation. Let n be the number of items in the list.

add(item)

 adds item to the head

of list

append(item)

adds item to the tail of list

length()

returns number of

items in the list

pop()

removes and returns

tail item

insert(position,item)

Fall 2013 Name: ______________________

4

class UnorderedList:

 def __init__(self):

 self._head = None

 self._size = 0

 self._tail = None

 def insert(self, position, item):

class Node:

 def __init__(self, initdata):

 self.data = initdata

 self.next = None

 def getData(self):

 return self.data

 def getNext(self):

 return self.next

 def setData(self, newdata):

 self.data = newdata

 def setNext(self, newnext):

 self.next = newnext

