Fall 2013 Name: M@F‘k p‘-

Data Structures - Test 1

Question 1. (4 points) Consider the following Python code. 5 3
for i in range(n): v”‘*ny " /’Kﬁ

for j in range(n*n):s=—}y X

print (i, 3J}

What is the big-oh notation O () for this code segment in terms of n? O (A s >

Question 2. (4 points) Considet the following Python code.

i=1 I
while i < n: = m@ﬁ"\
for j in range{nj}! wmwe
print{j} M
i=1i*2

What is the big-oh notation O () for this code segment in terms of n?

D(nlogn)

Question 3. (4 points) Consider the following Python code.

def main(n): "\ X
for 1 in range(n): ™~ m v, ? n
doSomething(n} « pl ¢ 7 . —
doMore (n) —e }'f'z 2 e A Z 4

def doSomething({n}:
for k in range(n) ! -
print (k) A)(

def doMore (n}:
for k in range{n): — //‘)(
print (k)

main{n}) X A
What is the big-oh notation O () for this code segment in terms of n? O (») ’Z,}

Question 4. (8 points) Suppose a O(n’) algorithm takes 10 seconds when n=1,000. How long would you expect

the algorithm to run when n = 10,0007 3
"T’(n 000) = ¢ 000 = |Dsec

OnY) = T (n)= Cl/i
C = %%m = JM_Q% cee= |0 gec Tﬂ([)= ¢ /Qmogchm

o0 10 :m%WiW%w
(e QQO&@j

Question 5. (5 points) Why should any method/function having a "precondition” raise an exception if the
precondition is violated?

IP Pm(amﬁl‘-f‘r'bm IS Yio -ﬂ?’h"i, 4’2@’1 %A@ ,77;57/2}4//-?)@
Wl” M"f“ W@Hﬁf (@r‘%zz‘Hy Beﬁ@" "fLO épff@f/i’f‘/

“{‘w: Clhegyr é’ﬁg S00m 44 F)@,gffg/g V\@‘\LL(/}, ZZ%@\ -
tr "V’!"Qf\ Trac [i’” (7 »}ém Cerpe (’ﬁaw;ﬁﬁ is #oee ei; !@%fiﬁ

Name:

Fall 2013
Question 6. Consider the following FIFO (First-In-First-Out) Queue implementation utilizing a Python list:

Recall that a queue is a linear data structure that allows adding new items at the rear and removing items from the
front. One possible implementation of a queue would be to use a built-in Python list to store the items such that

o the rear item is always stored at index 0,
* the front item is always at index len(self._items)-1 or -1

Queue Object Python List Object

rear front

a) (8 points) Complete the big-oh O (), for each Queue operation, assuming the above implementation. Let n be

the number of items in the Queue.

isEmpty engueue dequeue size

(L) OCn) o(1) OQ)

b) (10 points) Compiete the method for the dequeue operation including the precondition check.

def dequeune{self):
""'"Removes and returns the front item of the gueue

Precondition: the queue is not empty.
Pestcondition: front item is remcoved from the queue and returned"""

retup _ge(Pg _ /‘*em,. po/o()

¢) (7 points) Suggest an alternate Queue implementation to speed up some of its operations.

Lm!feef S e fﬁmmﬂﬁ’wﬂ mv/ A‘?Jm all o/ﬂm«'{’fénf @K([)
S Wf’:’] gr"ag;i; 0

2

Name:

Fall 2013
Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a
complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is < either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

Python List actually used
to store heap items g% 9 (15 [10 (114 | 20 |30 |50 {300 [125 |117

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index /, what is the index of?
¢ itsleft child if it exists: ¢ % 2.
* itsright child if it exists: } 4) < /

N

* its parent if it exists: n ;/,/ %
b) (7 points) What would the above h€dp look like after inserting 12 and then 25 (show the changes on above tree)

¢) (3 points) What is the big-oh notation for inserting a new item in the heap? @C { Q? » > S’f'l?’)(g /I&?aig“

ﬁe(g {7 [o9y o
Now consider the de1Min operation that removes a@'etums th; minimum item.

Python List actually used _
to store heap items f}?% 9 |15 |10 1114 |20 | 30 | 50 |300 {125 |117

d) (2 point) What item would de1Min remove and return from the above heap? q
e) (7 points) What would the above heap look like after de1Min? (show the changes on above tree)

f) (3 points) What is the big-oh notation for delMin? g
Q{ mé]z é’\)

Fall 2013

Name:

Question 8. The textbook’s unordered list ADT uses a singly-linked list 1mplementat10n Tadded the size and

tail aftributes:

UnorderedList Object

@

data next

2.

data next data nexi

data next

I\Vl

o lc'

!al Iy !y

a) (15 points) The insert (position, item) method adds the item to the list at the specified position.
Unlike the textbook’s implementation, ASSUME that the list may contain duplicate items!!! The precondition is
that position is a nonnegative integer. If position is 0, then add it to the head of the list. If positionis size
or bigger, then add it to the tail of the list. Complete the insert(position, item) method code including the

precondition check.

if

Qgc%om

‘FM/O §€%N€x{ (.Sf f Aaw/)

seld,_head = “f“emﬁ

£ self, . 5e =
5@,'{2 “f“a:f"‘“%#&«zgﬁ

l‘_P Pog,w{-ﬂ,m > Sf%@:
P Self . sie =

class UnorderedList:

def init (self):
self. head = Nocne
self., size = 0
self._tail = None

def insert(self, position, item)

’.P Post‘% o & @
yalse (Iﬂﬂéé’a‘mw})
Femp= Node (1‘4”@:%1)

20,

PQS I"‘il? :34”1

class Node:

def _ init__(self, initdata):
self.data = initdata

self.next = None

def getbhata{self):
return self._data

def getWext {selif)}:
return self.next

def setData(self, newdata):
self.data = newdata

def setNext(self, newnext):
self next = newnext

V§1

oSt %@ Nonnegstl]

e,S lgef ,,,:f:éf("‘)Le’ﬁ

éuwﬁf (u

tem P Seﬁfm&(
Cvrvoat, e}%&’g
Cuvrest, Se?N@,\@{ (4o

547

b) (10 points) AsLumm the unordered list ADT described above that allows duplicate items. Complete the
big-oh O () for each operation, Let n be the number of items in the list,

insert (position, item) pop{} length() append {item) add {(iten)
removes and returns returns number of |adds item to the tail of list adds item to the head
tail item items in the list of list

0n]

oCt)

OC]

O ()

DG\)

F\ﬂééf; to veset _4arl potnte, 4

