
Data Structures - Test 1

Question 1. (5 points) Consider the following Python code.

for i in range(n):

 j = 1

 while j < n:

 for k in range(n):

 print (i, j, k)

 j = j * 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (5 points) Consider the following Python code.

i = 2**n # this is 2n

while i > 1:

 for j in range(n):

 print(j)

 i = i // 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (5 points) Consider the following Python code.

def main(n):

 for i in range(n):

 doSomething(n)

def doSomething(n):

 for k in range(n):

 print(k)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (10 points) Suppose a Ο (n4) algorithm takes 10 seconds when n = 1,000. How long would you

expect the algorithm to run when n = 10,000?

Question 5. (10 points) Why should you design a program instead of “jumping in” by start writing code?

Spring 2013 Name: ______________________

1

Question 6. Consider the following Stack implementation utilizing a Python list:

a

b

c

top

top

bottombottom

 Stack

 "Abstract"

 items:

 Stack Object Python list Object

c b a

0 1 2

a) (6 points) Complete the big-oh notation for the Stack methods assuming the above implementation: ("n" is the #

items)

Big-oh

__init__isEmpty() size()peek()pop()push(item)

b) (9 points) Complete the code for the pop method including the precondition check.

class Stack:

 def __init__(self):
 self._items = []

 def pop(self):

 """Removes and returns the top item of the stack

 Precondition: the stack is not empty.

 Postcondition: the top item is removed from the stack and returned"""

c) (5 points) Suggest an alternate Stack implementation to speed up some of its operations.

Spring 2013 Name: ______________________

2

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 10

25 15

 90 30 5040

120 115 115

115

 37

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10]

1 2 3 4 5 6 7 8 9 10 110

 not
used 10 25 15 90 30 40 50 120 115 37

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (6 points) What would the above heap look like after inserting 35 and then 12 (show the changes on above tree)

c) (2 points) What is the big-oh notation for inserting a new item in the heap?

Now consider the delMin operation that removes and returns the minimum item.

 10

25 15

 90 30 5040

120 115 115

115

 37

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10]

1 2 3 4 5 6 7 8 9 10 110

 not
used 10 25 15 90 30 40 50 120 115 37

Python List actually used
to store heap items

d) (1 point) What item would delMin remove and return from the above heap?

e) (6 points) What would the above heap look like after delMin? (show the changes on above tree)

f) (2 points) What is the big-oh notation for delMin?

Spring 2013 Name: ______________________

3

Question 8. The textbook’s ordered list ADT uses a singly-linked list implementation. I added the _size and

_tail attributes:

data next data next data next data next

_head

 _tail

_size 4

'b' 'e' 'm' 'v'

 OrderedList Object

a) (15 points) The pop(position) method removes and returns the item at the specified position. The

precondition is that position is a nonnegative integer corresponding to an actual list item (e.g., for the above list

0 ≤ position ≤ 3). Complete the pop(position) method code including the precondition check.

class OrderedList:

 def __init__(self):
 self._head = None
 self._size = 0
 self._tail = None

 def pop(self, position):

b) (10 points) Assuming the ordered list ADT described above. Complete the big-oh O () for each operation. Let

n be the number of items in the list.

add(item)

 adds item to its sorted spot

in the list

index(item)

returns the position of

item in the list

length()

returns number of

items in the list

pop()

removes and returns

tail item

pop(position)

removes and returns the item at

the specified position

Spring 2013 Name: ______________________

4

