
Data Structures - Test 1

Question 1. (4 points) Consider the following Python code.

for i in range(n*n):

 j = 1

 while j < n:

 print (i, j)

 j = j * 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

i = 1

while i < n:

 for j in range(n):

 print(j)

 for k in range(n):

 print(k)

 i = i * 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):

 for i in range(n):

 doSomething(n)

def doSomething(n):

 for k in range(n):

 doMore(n)

def doMore(n):

 for k in range(n):

 print(k)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (8 points) Suppose a Ο (n5) algorithm takes 10 seconds when n = 100. How long would you expect

the algorithm to run when n = 1,000?

Question 5. (5 points) Why should you design a program instead of “jumping in” and start by writing code?

Spring 2014 Name: ______________________

1

Question 6. A Deque (pronounced “Deck”) is a linear data structure which behaves like a double-ended queue, i.e.,

it allows adding or removing items from either the front or the rear of the Deque. One possible implementation of

a Deque would be to use a built-in Python list to store the Deque items such that

� the rear item is always stored at index 0,

� the front item is always at index len(self._items)-1 or -1

 'a' 'b' 'c' 'd'

0 1 2 3

 _items:

Python List Object

front

Deque Object

rear

a) (6 points) Complete the big-oh O (), for each Deque operation, assuming the above implementation. Let n be

the number of items in the Deque.

sizeremoveFrontaddFrontremoveRearaddRearisEmpty

b) (9 points) Complete the method for the removeRear operation including the precondition check.

 def removeRear(self):

 """Removes and returns the rear item of the Deque

 Precondition: the Deque is not empty.

 Postcondition: Rear item is removed from the Deque and returned"""

c) (5 points) Suggest an alternate Deque implementation to speed up some of its operations.

Spring 2014 Name: ______________________

2

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 7

18 13

 45 23 5030

200 51 61 77

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10]

1 2 3 4 5 6 7 8 9 10 110

 not
used 7 18 13 45 23 30 50 200 51 77 61

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (7 points) What would the above heap look like after inserting 12 and then 25 (show the changes on above tree)

c) (3 points) What is the big-oh notation for inserting a new item in the heap?

Now consider the delMin operation that removes and returns the minimum item.

 7

18 13

 45 23 5030

200 51 61 77

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10]

1 2 3 4 5 6 7 8 9 10 110

 not
used 7 18 13 45 23 30 50 200 51 77 61

Python List actually used
to store heap items

d) (2 point) What item would delMin remove and return from the above heap?

e) (7 points) What would the above heap look like after delMin? (show the changes on above tree)

f) (3 points) What is the big-oh notation for delMin?

Spring 2014 Name: ______________________

3

Question 8. The textbook’s Ordered list ADT uses a singly-linked list implementation. I added the _size and

_tail attributes:

data next data next data next data next

_head

 _tail

_size 4

'd' 'h' 'm' 't'

 OrderedList Object

a) (15 points) The add(item) method adds the item to the list. Recall that the textbook’s implementation,

cannot contain duplicate items!!! Thus, the precondition is that item is a not already in the list. Complete the

add(item) method code including the precondition check.

b) (10 points) Assuming the ordered list ADT described above does not allows duplicate items. Complete the

big-oh O () for each operation. Let n be the number of items in the list.

index(item)

 returns the position of

item in the list

remove(item)

removes the item

from the list

length()

returns number of

items in the list

pop()

removes and returns

tail item

add(item)

Spring 2014 Name: ______________________

4

class OrderedList(object):

 def __init__(self):

 self._head = None

 self._size = 0

 self._tail = None

 def add(self, item):

class Node:

 def __init__(self, initdata):

 self.data = initdata

 self.next = None

 def getData(self):

 return self.data

 def getNext(self):

 return self.next

 def setData(self, newdata):

 self.data = newdata

 def setNext(self, newnext):

 self.next = newnext

