2. More partial TreeNode class and partial BinarySearchTree class.

class BinarySearchTree:

 # def delete(self, key):
 # if self.size > 1:
 # nodeToRemove = self._get(key, self.root)
 # if nodeToRemove:
 # self.remove(nodeToRemove)
 # self.size = self.size - 1
 # else:
 # raise KeyError('Error, key not in tree')
 # elif self.size == 1 and self.root.key == key:
 # self.root = None
 # self.size = self.size - 1
 # else:
 # raise KeyError('Error, key not in tree')

def delete(self, key):
 self._delete(key)

def remove(self, currentNode):
 if currentNode.isLeaf(): # leaf
 if currentNode == currentNode.parent.leftChild:
 currentNode.parent.leftChild = None
 else:
 currentNode.parent.rightChild = None
 elif currentNode.hasBothChildren(): # interior
 succ = currentNode.findSuccessor() # successor
 succ.spliceOut() # spliceOut
 currentNode.key = succ.key
 currentNode.payload = succ.payload
 else: # this node has one child
 if currentNode.isLeftChild():
 if currentNode == currentNode.parent.leftChild:
 currentNode.parent.leftChild = currentNode.leftChild
 else:
 currentNode.replaceNodeData(currentNode.leftChild.key,
 currentNode.leftChild.payload,
 currentNode.leftChild.leftChild,
 currentNode.leftChild.rightChild)
 else:
 if currentNode == currentNode.parent.rightChild:
 currentNode.parent.rightChild = currentNode.rightChild
 else:
 currentNode.replaceNodeData(currentNode.rightChild.key,
 currentNode.rightChild.payload,
 currentNode.rightChild.leftChild,
 currentNode.rightChild.rightChild)

a) Update picture where we delete a leaf.

b) Where in the code is each handled?

c) Draw all pictures deleting all nodes with one child.
3. Yet even more partial TreeNode class and partial BinarySearchTree class.

```python
class TreeNode:
    ...
    def findSuccessor(self):
        succ = None
        if self.hasRightChild():
            succ = self.rightChild.findMin()
        else:
            if self.parent:
                if self.isLeftChild():
                    succ = self.parent
                else:
                    self.parent.rightChild = None
                    succ = self.parent.findSuccessor()
                    self.parent.rightChild = self
        return succ

def findMin(self):
    current = self
    while current.hasLeftChild():
        current = current.leftChild
    return current

def spliceOut(self):
    if self.isLeaf():
        if self.isLeftChild():
            self.parent.leftChild = None
        else:
            self.parent.rightChild = None
    elif self.hasAnyChildren():
        if self.hasLeftChild():
            self.parent.leftChild = self.leftChild
            self.leftChild.parent = self.parent
        else:
            self.parent.rightChild = self.leftChild
            self.leftChild.parent = self.parent
        else:
            if self.isLeftChild():
                self.parent.leftChild = self.rightChild
            else:
                self.parent.rightChild = self.rightChild
```

100
1. Consider the Binary Search Tree (BST):

 ![Binary Search Tree Diagram]

 a. What would need to be done to delete 32 from the BST?
 set parents _left or right child pointer_ to None

 b. What would need to be done to delete 9 from the BST?
 disconnect by setting child's parent and parents left or right to delete node's child

 c. What would be the result of deleting 50 from the BST? Hint: One technique when programming is to convert a hard problem into a simpler problem. Deleting a BST node that contains two children is a hard problem. Since we know how to delete a BST node with none or one child, we can convert “deleting a node with two children” problem into a simpler problem by overwriting 50 with another node’s value. Which nodes can be used to overwrite 50 and still maintain the BST ordering?

 d. Which node would the TreeNode’s findSuccessor method return for sucess if we are deleting 50 from the BST?
 pointer to 53

2. When the findSuccessor method is called how many children does the self node have?
 50

3. How could we improve the findSuccessor method?

 pointer to 53

4. When the spliceOut method is called from remove how many children could the self node have?
 one or 0

5. How could we improve the spliceOut method?
6. The shape of a BST depends on the order in which values are added (and deleted).
 a) What would be the shape of a BST if we start with an empty BST and insert the sequence of values:

 70, 90, 80, 5, 30, 110, 95, 40, 100

 b) If a BST contains n nodes and we start searching at the root, what would be the worst-case big-oh \(O(\cdot) \) notation for a successful search? (Draw the shape of the BST leading to the worst-case search)

7. We could store a BST in an array like we did for a binary heap, e.g., root at index 1, node at index \(i \) having left child at index \(2 \times i \), and right child at index \(2 \times i + 1 \).
 a) Draw the above BST (after inserting: 70, 90, 80, 5, 30, 110, 95, 40, 100) stored in an array (leave blank unused slots)

 b) What would be the worst-case storage needed for a BST with \(n \) nodes?

 \[
 O\left(2^n\right) \text{ storage}
 \]

 \[
 O\left(\frac{2^n}{2-1}\right)
 \]

8. a) If a BST contains \(n \) nodes, draw the shape of the BST leading to best, successful search in the worst case.

 b) What is the worst-case big-oh \(O(\cdot) \) notation for a successful search in this "best" shape BST?

 \[
 O\left(\log_2 n\right)
 \]
1. An *AVL Tree* is a special type of Binary Search Tree (BST) that it is *height balanced*. By height balanced I mean that the height of every node’s left and right subtrees differ by at most one. This is enough to guarantee that an AVL tree with \(n \) nodes has a height no worse than \(O(1.44 \log_2 n) \). Therefore, insertions, deletions, and search are worst case \(O(\log_2 n) \). An example of an AVL tree with integer keys is shown below. The height of each node is shown.

```
3
  /   \
2     1
  /   \
30    60
   /   /   \   /
  9  34  80  90
```

Each AVL-tree node usually stores a *balance factor* in addition to its key and payload. The balance factor keeps track of the relative height difference between its left and right subtrees, i.e., height(left subtree) - height(right subtree).

a) Label each node in the above AVL tree with one of the following *balance factors*:
 - 0 if its left and right subtrees are the same height
 - 1 if its left subtree is one taller than its right subtree
 - -1 if its right subtree is one taller than its left subtree

b) We start a *put* operation by adding the new item into the AVL as a leaf just like we did for Binary Search Trees (BSTs). Add the key 90 to the above tree.

c) Identify the node “closest up the tree” from the inserted node (90) that no longer satisfies the height-balanced property of an AVL tree. This node is called the *pivot node*. Label the pivot node above.

d) Consider the subtree whose root is the pivot node. How could we rearrange this subtree to restore the AVL height balanced property? (Draw the rearranged tree below)
Data Structures (CS 1520)

Lecture 23

2. Typically, the addition of a new key into an AVL requires the following steps:
 - compare the new key with the current tree node’s key (as we did in the `put` function called by the `put` method
 in the BST) to determine whether to recursively add the new key into the left or right subtree
 - add the new key as a leaf as the base case(s) to the recursion
 - recursively (updateBalance method) adjust the balance factors of the nodes on the search path from the new node
 back up toward the root of the tree. If we encounter a pivot node (as in question (c) above) we perform one or two
 “rotations” to restore the AVL tree’s height-balanced property.

For example, consider the previous example of adding 90 to the AVL tree. Before the addition, the pivot node (60)
was already -1 (“tall right” - right subtree had a height one greater than its left subtree). After inserting 90, the pivot’s
right subtree had a height 2 more than its left subtree (balance factor -2) which violates the AVL tree’s height–balance
property. This problem is handled with a *left rotation* about the pivot as shown in the following generalized diagram:

Before the addition:
from parent

```
  B
  / \  
 D   T_C
  \   \  
 T_A   T_E
   \  \  
  height h-1 height h-1
```

After the addition, but before rotation:
from parent

```
  B
  / \  
 D   T_C
  \   \  
 T_A   T_E
   \  \  
  height h-1 height h-1
```

Recursive updateBalance method finds the pivot
and calls the rebalance method to perform proper rotation(s)

(D’s balance factor was already adjusted before
the pivot is found by the recursive updateBalance
method which moves toward the root)

After left rotation at pivot:
from parent

```
  B
  / \  
 D   T_C
  \   \  
 T_A   T_E
   \  \  
  height h-1 height h-1
```

a) Assuming the same initial AVL tree (upper, left-hand of above diagram) if the new node would have increased the
height of T_C (instead of T_E), would a left rotation about the node B have rebalanced the AVL tree?

N
b) Before the addition, if the pivot node was already -1 (all right) and if the new node is inserted into the left subtree of the pivot node's right child, then we must do two rotations to restore the AVL-tree's height-balance property.

Before the addition: After the addition, but before first rotation:

After the left rotation at pivot and balance factors adjusted correctly: After right rotation at F, but before left rotation at pivot:

b) Suppose that the new node was added in T_c instead of T_b, then the same two rotations would restore the AVL-tree's height-balance property. However, what should the balance factors of nodes B, D, and F be after the rotations?