
Objective: Gain experience implementing a linked data structure by using a doubly-linked list to implement a

positional list ADT.

Part A: The position-base operations described in Tables 16.4 and 16.5 of the Lambert textbook treats the cursor

poorly. For example, the remove operation is described as:

“Precondition: There have been no intervening insert or remove operations since the most recent next or

previous operation. Removes the item returned by the most recent next or previous.”

Typically, if a method has a precondition, then there is another method to check the precondition. For example,

the next operation has a precondition: “hasNext returns True.” However, the remove operation’s

precondition cannot be checked without the user application maintaining a list of preceeding operations -- a bad

design! The problem occurs because the insert and remove operations leave the cursor in an undefined state.

Instead of thinking of a cursor between two list items, let's have a current item which is always defined as long as

the list is not empty. We will insert and delete relative to the current item.

Precondition: the list is not empty. Removes and returns the current item.

Making the next item the current item if one exists; otherwise the tail item in

the list is the current item unless the list in now empty.

L.remove()

Precondition: the list is not empty. Replaces the current item by the newValue. L.replace(newValue)

Inserts item before the current item, or as the only item if the list is empty.

The new item is the current item.

L.insertBefore(item)

Inserts item after the current item, or as the only item if the list is empty. The

new item is the current item.

L.insertAfter(item)

Precondition: the list is not empty. Makes the last item the current item. L.last()

Precondition: the list is not empty. Makes the first item the current item. L.first()

Precondition: hasPrevious returns True. Postcondition: The current item has

moved left one item

L.previous()

Precondition: the list is not empty. Returns True if the current item has a

previous item; otherwise return False.

L.hasPrevious()

Precondition: hasNext returns True. Postcondition: The current item has

moved right one item

L.next()

Precondition: the list is not empty. Returns True if the current item has a next

item; otherwise return False.

L.hasNext()

Precondition: the list is not empty. Returns the current item without removing

it or changing the current position.

L.getCurrent()

Description of operationPositional-based operations

The mypositionalList.py file contains a LinkedPositionalList class, which uses a doubly-linked list

with a header node and trailer node to reduce the number of “special cases” (e.g., inserting first item in an empty

list). An empty list looks like:

previous data next previous data next

_header

_current

_trailer

_size 0

Use the testList.py program to test your list.

After implementing and testing your LinkedPositionalList class, raise you hand and demonstrate your

code.

Data Structures (CS 1520) Lab 6 Name:_________________

Lab 6 - 1

