Data Structures (CS 1520) Lab 6 Name:

Objective: Gain experience implementing a linked data structure by using a doubly-linked list to implement a
positional list ADT.

Part A: The position-base operations described in Tables 16.4 and 16.5 of the Lambert textbook treats the cursor
poorly. For example, the remove operation is described as:

“Precondition: There have been no intervening insert or remove operations since the most recent next or
previous operation. Removes the item returned by the most recent next or previous.”

Typically, if a method has a precondition, then there is another method to check the precondition. For example,
the next operation has a precondition: “hasNext returns True.” However, the remove operation’s
precondition cannot be checked without the user application maintaining a list of preceeding operations -- a bad
design! The problem occurs because the insert and remove operations leave the cursor in an undefined state.

Instead of thinking of a cursor between two list items, let's have a current item which is always defined as long as
the list is not empty. We will insert and delete relative to the current item.

Positional-based operations | Description of operation

L.getCurrent () Precondition: the list is not empty. Returns the current item without removing
it or changing the current position.

L.hasNext () Precondition: the list is not empty. Returns True if the current item has a next
item; otherwise return False.

L.next () Precondition: hasNext returns True. Postcondition: The current item has
moved right one item

L.hasPrevious () Precondition: the list is not empty. Returns True if the current item has a
previous item; otherwise return False.

L.previous() Precondition: hasPrevious returns True. Postcondition: The current item has
moved left one item

L.first () Precondition: the list is not empty. Makes the first item the current item.

L.last() Precondition: the list is not empty. Makes the last item the current item.

L.insertAfter (item) | Inserts item after the current item, or as the only item if the list is empty. The
new item is the current item.

L.insertBefore (item) | Inserts item before the current item, or as the only item if the list is empty.
The new item is the current item.

L.replace(newValue) | Precondition: the list is not empty. Replaces the current item by the newValue.

L.remove () Precondition: the list is not empty. Removes and returns the current item.
Making the next item the current item if one exists; otherwise the tail item in
the list is the current item unless the list in now empty.

The mypositionalList.py file contains a LinkedPositionalList class, which uses a doubly-linked list
with a header node and trailer node to reduce the number of “special cases” (e.g., inserting first item in an empty
list). An empty list looks like:

. previous data next previous data next

\
N — /
N 2
N -
N -
~ _ -

Use the testList.py program to test your list.

After implementing and testing your LinkedPositionalList class, raise you hand and demonstrate your
code.

Lab6-1




