
0

0

0

2

2

2

1

1

1

0

0

0

1

1

1

2

2

3

3

3

4

4

4

5

5

5

6

6

6

 7

 7

 7

Sector #

Track #

0

1

3

Surface #

.

..

2

2

S-2

S-1

R/W Heads

0
1 2

3

4 5 6
7 8

9 10 11

13 14
15 12

16
17 18

19

8-15 are on
surface 1
(on the bottom
 of the disk)

 Logical View of Disk as Linear Collection of Blocks

0 1 2

(track #, surface #, sector #) to

(0,0,0) (0,0,1) (0,0,2)

 Linear block # mapping

All of cylinder 0 All of cylinder 1

track # surface # sector #Bits of linear block # :

. . .

1. Disk-access time = (seek time) + (rotational delay) + (date transfer time). How is each component of the disk-access

time effected by increasing the disk's RPMs (revolutions per minute)?

b) If we want fast access to a collection of sectors, where can we place them to minimize seek time and rotational

delay?

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 1

User Program - HLL programming language make system calls to OS to:

1. open file - establish a link between file variable and file for either reading, writing, or both

2. access file - read or write one piece of data at a time (e.g., char., record, etc.)

3. close file - flush changes to disk

Operating System - manage and control access secondary storage through its file system which contains

information about every file: location on disk, ownership and security/protection

OS maintains free disk space "list"

OS views disk as linear sequence of blocks (block 0, block 1, etc.), but assumes closeness

in block # means close with respect to access time.

Secondary Storage - accepts R/W requests from OS for block# and maps block# to internals physical address

 Device (e.g., (track #, surface #, sector #) - more complex than above picture!)

OS buffers some blocks in memory to improve efficiency

Kinds of File Access:

� serial/sequential files - open at the beginning and read sequentially from beginning to end linearly

� random-access files - “seek" to any position by specifying a byte-offset from the beginning of the file, record #, etc.

� random-access of a record by key

Implementation of Files on Disk- how are blocks allocated?

2. non-contiguous - scattered across linear address space of OS and disk

linked-list of blocks on disk

File system meta-data

for file

. . .

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?

3. contiguous - sequential collection of blocks from OS linear view of disk

File system meta-data

for file 10 1412 1611 1513 1817

10

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 2

4. file descriptor blocks - list of blocks hold the address of the physical location of data blocks

File system meta-data

for file
2nd data

1st data

3rd data

0th data

block in

block in

block in

block in

file

file

file

file

file descriptor

block(s)

pointer

to next

file descriptor

block

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?

5. To implement "random-access of a record by key" in a file how might we use hashing?

6. To implement "random-access of a record by key" in a file why would an AVL tree not work well?

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 3

7. A B+ Tree is a multi-way tree (typically in the order of 100s children per node) used primarily as a file-index

structure to allow fast search (as well as insertions and deletions) for a target key on disk. Two types of pages (B+ tree

"nodes") exist:

� Data pages - which always appear as leaves on the same level of a B+ tree (usually a doubly-linked list too)

� Index pages - the root and other interior nodes above the data page leaves. Index nodes contain some minimum and

maximum number of keys and pointers bases on the B+ tree's branching factor (b) and fill factor. A 50% fill factor

would be the minimum for any B+ tree. All index pages must have ≤ # child ≤ b, except the root which must«b/2»
have at least two children.

Consider an B+ tree example with b = 5.

 80

 40

 8 40 65 80 90 120 130

 90 65

 25 60 70 88 95 125 171

 120

 72

 130

a) How would you find 88?

b) Where would you insert 50, 100, 105, 110, 180, 200, 210?

8. For a B+ tree with a branch factor 201, what would be the worst case height of the tree if the number of keys was

1,000,000,000,000?

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 4

