
1. Suppose you had a map of settlements on the planet X

.

.

.

.

.

.

.

.

.

a

 b
c

d

ef
g

h
i

We want to build roads that allow us to travel between any pair of cities. Because resources are scarce, we want

the total length of all roads build to be minimal. Since all cities will be connected anyway, it does not matter

where we start.

a) Assuming we start at city “a” which city would you connect first? Why these cities?

b) What cities would you connect next?

c) What would be some characteristics of the resulting "graph" after all the cities are connected?

d) Does your algorithm come up with the overall best (globally optimal) result?

2. Prim’s algorithm for determining the minimum-spanning tree of a graph is an example of a greedy algorithm.

Unlike divide-and-conquer and dynamic programming algorithms, greedy algorithms DO NOT divide a problem

into smaller subproblems. Instead a greedy algorithm builds a solution by making a sequence of choices that look

best ("locally" optimal) at the moment without regard for past or future choices (no backtracking to fix bad

choices).

a) What greedy criteria does Prim’s algorithm use to select the next vertex and edge to the partial minimum

spanning tree?

Data Structures (CS 1520) Lecture 27 Name:_________________

Lecture 27 Page 1

b) What data structure could be used to efficiently determine that selection?

Prim's Algorithm (Graph g):

mark all edges as unvisited

mark all vertices as unvisited

mark any vertex v as visited

for each edge leading from v do

 add the edge to the heap

count = 1

while count < number of vertices in g do

 remove an edge from the heap

 if one end of the edge, say vertex w, is not visited then

 mark the edge and w as visited

for each edge leading from w do

 add the edge to the heap

count = count + 1

c) What would the run-time be for Prim's algorithm assuming an adjacency matrix graph implementation?

Let n be the number of vertices and m be the number of edges.

d) What would the run-time be for Prim's algorithm assuming an adjacency matrix graph implementation?

Data Structures (CS 1520) Lecture 27 Name:_________________

Lecture 27 Page 2

3. Consider the following directed graph (diagraph) G = (V, E) with adjacency matrix W:

0 1

3

2

4

1

1

5 9
33

3

4

2
3

v v

v

v
v

W:

1 1

2 2

3 3

4 4

0 1

0 0

2 3 4

From

To

0 1 1 5

9 0 3 3

0 4

2 0 3

3 0

v0
v
1

v
2

v
3

v
4

vertex

Dijkstra’s Algorithm is another greedy algorithm that finds the shortest path from some vertex, say v0, to all other

vertices. Four parallel arrays [0..(n-1)] are used:

included[i] = marks whether a known shortest path has be determined to vi

distance[i] = length of current shortest path from v0 to vi using only vertices in Y as intermediates

parent[i] = index of last vertex in Y on current shortest path from v0 to vi

vertex[i] = mapping between vertex label and index position

a) Initially, the length and touch arrays are shown below starting from v0. Complete the trace of the algorithm.

distance:

distance:

included:

included:

parent:

parent:

2

2

2

2

2

2

 1

 1

 1

1

1

1

3

3

3

3

3

3

4

4

4

4

4

4

1

1

1

1

5

5

v vv v

v vv vv v

1 1 0 0

v
0

2 2 3 3 4 4

3 3

4

1

1) Find closet vertex to that's not in Y

2) Update distances now that this

 vertex is in Y.

4) Mark this vertex as included in Y

3) Update parent accordingly if

 you find a shorter path

 Algorithm

0

0

T

T

 0 0

 0

 0

 0

 0

F

T

F

F

F

F

F

F v1

v0

v0

v0 v0

v0

v0

v0

 (smallest distance[i] with included[i] = F)

Data Structures (CS 1520) Lecture 27 Name:_________________

Lecture 27 Page 3

