
1. Traveling Salesperson Problem (TSP) -- Find an optimal (i.e., minimum length) tour when at least one tour

exists. A tour (or Hamiltonian circuit) is a path from a vertex back to itself that passes through each of the

other vertices exactly once. (Since a tour visits every vertice, it does not matter where you start, so we will

general start at v1.) What are the length of the following tours?

a) [v1, v2, v3, v4, v1]

b) [v1, v3, v2, v4, v1]

c) List another tour starting at v1 and its length.

d) For a graph with "n" vertices (v1, v2, ... ,vn), one possible approach to solving TSP would be to brute-force

generate all possible tours to find the minimum length tour. "Complete" the following decision tree to

determine the number of possible tours.

v n

v n

v n

v n

v 1

v 1

 2 v

 2
v

 2
v

 4
v

 4
v

 3
v

 3
v

 3
v

.

..

.. .

.

..

.

..

.

..

v n -1

v n -1

The TSP problem belongs to a class of problems known as NP-hard problems. Unfortunately, the fastest known

algorithms for all NP-hard problems are Θ(2n). (However, nobody has been able to prove that a polynomial

algorithm (e.g., Θ(n2), Θ(n3), etc.) is not possible. This is one of the biggest open questions in Computer

Science: “Does P = NP ?”) If you need to find the solution to an instance of an NP-hard problem, what can

you do?

� Backtracking (and Branch-and-Bound): Eventhough the worst case is still or , these often give�(2n) �(n!)

efficient results for large problems if we can “prune” a lot of branches in the search space tree above.

� Polynomial-time algorithms might exist for a subclass of NP-hard problem, e.g., for TSP with a restricted

graph.

� Approximation algorithm - gives good, but not necessarily optimal solutions. Usually, the solution is

bounded by how far from optimal its solution is (e.g., approximate solution at least half as good as optimal).

Data Structures (CS 1520) Lecture 28 Name:_______________

Lecture 28 Page 1

v 1 2
v

 4
v

 3
v

8

4

2
1

6
3

9
7 6

Approximation Algorithm for TSP with Triangular Inequality

Restrictions on the weighted, undirected graph G=(V, E):

1. There is an edge connecting every two distinct vertices.

2. Triangular Inequality: If W(u, v) denotes the weight on the edge connecting vertex u to vertex v, then for

every other vertex y,

W(u, v) W(u, y) + W(y, v).[

NOTES:

� These conditions satisfy automatically by a lot of natural graph problems, e.g., cities on a planar map with

weights being as-the-crow-flys (Euclidean distances).

� Even with these restrictions, the problem is still NP-hard.

A simple TSP approximation algorithm:

1. Determine a Minimum Spanning Tree (MST) for G (e.g., Prim's Algorithm section 4.1)

2. Construct a path that visits every node by performing a preorder walk of the MST. (A preorder walk lists a

tree node every time the node is encounter including when it is first visited and "backtracked" through.)

3. Create a tour by removing vertices from the path in step 2 by taking shortcuts.

1. Determine a Minimum Spanning Tree (MST) for G (e.g., Prim's Algorithm) if we start with vertex 1 in the

MST. (Assume edges connecting all vertices with their Euclidean distances)

1

2

3

4

5

6 7

8

Prim's algorithm is a greedy algorithm that performs the following:

a) Select a vertex at random to be in the MST.

b) Until all the vertices are in the MST:

� Find the closest vertex not in the MST, i.e., vertex closest to any vertex in the MST

� Add this vertex using this edge to the MST

Data Structures (CS 1520) Lecture 28 Name:_______________

Lecture 28 Page 2

2. Complete a path that visits every node by performing a preorder walk of the MST. (A preorder walk lists a

tree node every time the node is encounter including when it is first visited and "backtracked" through.)

1

2

3

4

5

6 7

8

Complete the path constructed by a preorder walk around the MST: [1 2 3 8 3 2

Data Structures (CS 1520) Lecture 28 Name:_______________

Lecture 28 Page 3

3. Complete a tour by removing vertices from the path in step 2 by taking shortcuts.

1

2

3

4

5

6 7

8

"s
ho

rtc
ut

"

a) Finish removing vertices from the preorder-walk path to create a tour by taking shortcuts:

[1 2 3 8 3 2 6 5 7 5 4 5 6 2 1]

b) When scanning the above path, how did you know which vertices to eliminate to take a shortcut?

c) If we take the optimal TSP tour and remove an edge, what do we have?

d) What is the relationship between the distance of the MST and the optimal TSP tour?

e) What is the relationship between the distance of the MST and the distance of the preorder-walk of the MST?

f) What is the relationship between the distance of the preorder-walk of the MST and the tour obtained from the

preorder-walk of the MST?

g) What is the relationship between the tour obtained from the preorder-walk of the MST and the optimal TSP

tour?

Data Structures (CS 1520) Lecture 28 Name:_______________

Lecture 28 Page 4

