
1) Consider the following linear search (sequential search) code:

def linearSearch(target, aList):
 """Returns the index position of target in aList or -1 if target
 is not in aList"""
 for position in xrange(len(aList)):
 if target == aList[position]:
 return position
 return -1

a) What is the basic operation of a search?

b) For the following aList value, which target value causes linearSearch to loop the fewest (“best case”) number

of times?

aList: 10 15 28 42 60 69 75 88 90 93 97

 0 1 2 3 4 5 6 7 8 9 10

c) For the following aList value, which target value causes linearSearch to loop the most (“worst case”) number

of times?

d) For a successful search (i.e., target value in aList), what is the “average” number of loops?

def linearSearchOfSortedListA(target, aList):

 """Returns the index position of target in sorted aList or -1 if target

 is not in aList"""

 breakOut = False
 for position in xrange(len(aList)):
 if target <= aList[position]:
 breakOut = True
 break

 if not breakOut:
 return -1
 elif target == aList[position]:
 return position
 else:
 return -1

e) The above version of linear search assumes that aList is sorted in ascending order. When would this version

perform better than the original linearSearch at the top of the page?

Data Structures Lecture 2 Name:_____________________

Page 1

2) Consider the following binary search code:

def binarySearch(target, lyst):
 """Returns the position of the target item if found, or -1 otherwise."""
 left = 0
 right = len(lyst) - 1
 while left <= right:
 midpoint = (left + right) / 2
 if target == lyst[midpoint]:
 return midpoint
 elif target < lyst[midpoint]:
 right = midpoint - 1
 else:
 left = midpoint + 1
 return -1

a) For binary search, what is the best-case time complexity B ()?

b) What is the basic operation for binary search?

c) “Trace” binary search to determine the total number of worst-case basic operations?

1 20 n-1. . . target

151

 midpoint

 midpoint

100

200

10

of

basic

operations

#

elements

worst-case

loop

1 2 "n"

.

.

.

left right

 #

d) If the list size is 1,000,000, then what is the maximun number of comparisons of list items on a successful search?

e) If the list size is 1,000,000, then how many comparisons would you expect on an unsuccessful search?

Data Structures Lecture 2 Name:_____________________

Page 2

All simple sorts consist of two nested loops where:

� the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing

by one in size each iteration of the outer loop.

� the inner loop's job is to do the work to extend the sorted part's size by one.

Initially, the sorted part is typically empty. The simple sorts differ in how their inner loops perform their job.

3) Selection sort is an example of a simple sort. Selection sort’s inner loop scans the unsorted part of the list to find

the minimum item. The minimum item in the unsorted part is then exchanged with the first unsorted item to extend

the sorted part by one item.

At the start of the first iteration of the outer loop, initial list is completely unsorted:

102035 40 456025 5090

Empty Sorted Part Unsorted Part

0 41 52 63 7 8

The inner loop scans the unsorted part and determines that the index of the minimum item, minIndex = 6.

102035 40 456025 5090

 Sorted Part
Unsorted Part

0 41 52 63 7 8

minIndex = 6firstUnsortedIndex = 0

After the inner loop (but still inside the outer loop), the item at minIndex is exchanged with the item at

firstUnsortedIndex. Thus, extending the Sorted Part of the list by one item.

10 2035 40 4560 25 5090

 Sorted Part
Unsorted Part

0 41 52 63 7 8

minIndex = 6firstUnsortedIndex = 0

a) Write the code for the outer loop

b) Write the code for the inner loop to scan the unsorted part of the list to determine the index of the minimum item

c) Write the code to exchange the list items at positions firstUnsortedIndex and minIndex.

Data Structures Lecture 2 Name:_____________________

Page 3

4) Bubble sort is another example of a simple sort. Bubble sort’s inner loop scans the unsorted part of the list

comparing adjacent items. If it finds adjacent items out of order, then it exchanges them. This causes the largest

item to “bubble” up to the “top” of the unsorted part of the list.

At the start of the first iteration of the outer loop, initial list is completely unsorted:

102035 40 456025 5090

Empty Sorted Part
Unsorted Part

0 41 52 63 7 8

The inner loop scans the unsorted part by comparing adjacent items and exchanging them if out of order.

10

10

10

10

10

10

20

20

20

20

20

20

35

35

35

35

35

35

40

40

40

40

40

40

45

45

45

45

45

45

60

60

60

60

60

60

25

25

25

25

25

25

50

50

50

50

50

50

90

90

90

90

90

90

 Sorted Part

 Sorted Part

Unsorted Part

Unsorted Part

0

0

0

0

0

0

4

4

4

4

4

4

1

1

1

1

1

1

5

5

5

5

5

5

2

2

2

2

2

2

6

6

6

6

6

6

3

3

3

3

3

3

7

7

7

7

7

7

8

8

8

8

8

8

lastUnsortedIndex = 8

in order, so don't exchange

in order, so don't exchange

in order, so don't exchange

out of order, so exchange

out of order, so exchange

out of order, so exchange

out of order, so exchange

out of order, so exchange

After the inner loop (but still inside the outer loop), there is nothing to do since the exchanges

occurred inside the inner loop.

a) What would be the worst-case complexity of bubble sort?

b) What would be true if we scanned the unsorted part and didn’t need to do any exchanges?

Data Structures Lecture 2 Name:_____________________

Page 4

