
1. So far, we have looked at simple sorts consisting of nested loops. The # of inner loop iterations n*(n-1)/2 is Ο(n2).

Consider using a min-heap to sort a list. (methods: BinHeap(), insert(item), delMin(), isEmpty(), size())

a) If we insert all of the list elements into a min-heap, what would we easily be able to determine?

1. Create an empty heap

Generl idea of Heap sort:

2. Insert all n array items into heap

3. delMin heap items back to array in sorted order

myList sorted list with n items

myList unsorted list with n items

heap with

n items

b) What is the overall O() for heap sort?

2. Another way to do better than the simple sorts is to employ divide-and-conquer (e.g., Merge sort and Quick Sort).

Recall the idea of Divide-and-Conquer algorithms. Solve a problem by:

� dividing problem into smaller problem(s) of the same kind

� solving the smaller problem(s) recursively

� use the solution(s) to the smaller problem(s) to solve the original problem

In general, a problem can be solved recursively if it can be broken down into smaller problems that are identical in

structure to the original problem.

a) What determines the “size” of a sorting problem?

b) How might we break the original problem down into smaller problems that are identical?

c) What base case(s) (i.e., trival, non-recursive case(s)) might we encounter with recursive sorts?

d) How do you combine the answers to the smaller problems to solve the original sorting problem?

e) Consider why a recursive sort might be more efficient. Assume that I had a simple n2 sorting algorithm with

n = 100, then there is roughly 1002 / 2 or 5,000 amount of work. Suppose I split the problem down into two smaller

sorting problems of size 50.

� If I run the n2 algorithm on both smaller problems of size 50, then what would be the approximate amount of

work?

� If I further solve the problems of size 50 by splitting each of them into two problems of size 25, then what would

be the approximate amount of work?

Data Structures Lecture 17 Name:__________________

Lecture 17 Page 1

3. The general idea merge sort is as follows. Assume “n” items to sort.

� Split the unsorted part in half to get two smaller sorting problems of about equal size = n/2

� Solve both smaller problems recursively using merge sort

� “Merge” the solutions to the smaller problems together to solve the original sorting problem of size n

a) Fill in the merged Sorted Part in the diagram.

b) Describe how you filled in the sorted part in the above example?

4. Merge sort is substantially faster than the simple sorts. Let’s analyze the number of comparisons and moves of

merge sort. Assume “n” items to sort.

Unsorted size n
Compares # Moves

 Sorted size n

Unsorted size n/2

 Sorted size n/2

Unsorted size n/2

 Sorted size n/2

n/4

n/4

n/4

n/4

n/4

n/4

n/4

n/4

1

2

2

22

22

2

2

2

2

2

2

2

2

2 2

2 2

2

2

. . .

.
 .

.

.
 .

.

.
 .

.

.
 .

.

a) On each level of the above diagram write the WORST-CASE number of comparisons and moves for that level.

b) What is the WORST-CASE total number of comparisons and moves for the whole algorithm (i.e., add all levels)?

c) What is the big-oh for worst-case?

Data Structures Lecture 17 Name:__________________

Lecture 17 Page 2

10

10

10

20

20

20

35

35

35

40

40

40

45

45

45

60

60

60

25

25

25

50

50

50

Unsorted Part

 Sorted Part

Unsorted Left Half

 Sorted Left Half

Unsorted Right Half

 Sorted Right Half

0

0

0

0

0

0

4

4

1

1

1

1

1

1

5

5

2

2

2

2

2

2

6

6

3

3

3

3

3

3

7

7

5. Quick sort general idea is as follows.

� Select a “random” item in the unsorted part as the pivot

� Rearrange (partitioning) the unsorted items such that:

� Quick sort the unsorted part to the left of the pivot

� Quick sort the unsorted part to the right of the pivot

a) Given the following partition function which returns the index of the pivot after this rearrangement, complete

the recursive quicksortHelper function. def quicksort(lyst):

 quicksortHelper(lyst, 0, len(lyst) - 1)

 def quicksortHelper(lyst, left, right):

b) For the list below, trace the first call to partition and determine the resulting list, and value returned.

54

 0

 0

 1 2 3 4 5 6 7 8

 8

 left index right boundary

26 93 17 77 31 44 55 20lyst:

b) What initial arrangement of the list would cause partition to perform the most amount of work?

c) Let “n” be the number of items between left and right. What is the worst-case O() for partition?

d) What would be the overall, worst-case O() for Quick Sort?

Data Structures Lecture 17 Name:__________________

Lecture 17 Page 3

Pivot

Pivot Index

ItemAll items < to Pivot All items >= to Pivot

def partition(lyst, left, right):

 # Find the pivot and exchange it with the last item

 middle = (left + right) / 2

 pivot = lyst[middle]

 lyst[middle] = lyst[right]

 lyst[right] = pivot

 # Set boundary point to first position

 boundary = left

 # Move items less than pivot to the left

 for index in range(left, right):

 if lyst[index] < pivot:

 temp = lyst[index]

 lyst[index] = lyst[boundary]

 lyst[boundary] = temp

 boundary += 1

 # Exchange the pivot item and the boundary item

 temp = lyst[boundary]

 lyst[boundary] = lyst[right]

 lyst[right] = temp

 return boundary

e) Ideally, the pivot item splits the list into two equal size problems. What would be the big-oh for Quick Sort in the

best case?

f) What would be the big-oh for Quick Sort in the average case?

g) The textbook’s partition code (Listing 5.15 on page 225) selects the first item in the list as the pivot item.

However, the above partition code selects the middle item of the list to be the pivot. What advantage does

selecting the middle item as the pivot have over selecting the first item as the pivot?

Data Structures Lecture 17 Name:__________________

Lecture 17 Page 4

