
1. There are two general approaches for traversing a graph from some starting vertex s:

� Depth First Search (DFS) where you explore as deeply into the graph as possible. If you reach a “dead end,” we

backtrack to the deepest vertex that allows us to try a different path.

� Breadth First Search (BFS) where you find all vertices a distance 1 (directly connected) from s, before finding all

vertices a distance 2 from s, etc.

What data structure would be helpful in each type of search? Why?

a) Breadth First Search (BFS):

b) Depth First Search (DFS):

2. On the next page is the textbook’s edge, vertex, and graph implementations.

a) How does this graph implementation maintain its set of vertices?

b) How does this graph implementation maintain its set of edges?

3. Assuming a graph g containing the word-ladder graph from lecture 26, on the diagram trace the bfs algorithm by

showing the value of each vertex’s color, predecessor, and distance attributes?

Data Structures (CS 1520) Lecture 27 Name:_________________

Lecture 27 Page 1

Data Structures (CS 1520) Lecture 27 Name:_________________

Lecture 27 Page 2

""" File: graph_algorithms.py """

from graph import Graph

from vertex import Vertex

from linked_queue import LinkedQueue

def bfs(g,start):

 start.setDistance(0)

 start.setPred(None)

 vertQueue = LinkedQueue()

 vertQueue.enqueue(start)

 while (vertQueue.size() > 0):

 currentVert = vertQueue.dequeue()

 for nbr in currentVert.getConnections():

 if (nbr.getColor() == 'white'):

 nbr.setColor('gray')

 nbr.setDistance(currentVert.getDistance()+1)

 nbr.setPred(currentVert)

 vertQueue.enqueue(nbr)

 currentVert.setColor('black')

""" File: vertex.py """

class Vertex:

 def __init__(self, key, color = 'white',

 dist = 0, pred = None):

 self.id = key

 self.connectedTo = {}

 self.color = color

 self.predecessor = pred

 self.distance = dist

 self.discovery = 0

 self.finish = 0

 def addNeighbor(self,nbr,weight=0):

 self.connectedTo[nbr] = weight

 def __str__(self):

 return str(self.id) + ' connectedTo: '

 + str([x.id for x in self.connectedTo])

 def getConnections(self):

 return self.connectedTo.keys()

 def getId(self):

 return self.id

 def getWeight(self,nbr):

 return self.connectedTo[nbr]

 def getColor(self):

 return self.color

 def setColor(self, newColor):

 self.color = newColor

 def getPred(self):

 return self.predecessor

 def setPred(self, newPred):

 self.predecessor = newPred

 def getDiscovery(self):

 return self.discovery

 def setDiscovery(self, newDiscovery):

 self.discovery = newDiscovery

 def getFinish(self):

 return self.Finish

 def setFinish(self, newFinish):

 self.finish = newFinish

 def getDistance(self):

 return self.distance

 def setDistance(self, newDistance):

 self.distance = newDistance

""" File: graph.py """

from vertex import Vertex

class Graph:

 def __init__(self):

 self.vertList = {}

 self.numVertices = 0

 def addVertex(self,key):

 self.numVertices = self.numVertices + 1

 newVertex = Vertex(key)

 self.vertList[key] = newVertex

 return newVertex

 def getVertex(self,n):

 if n in self.vertList:

 return self.vertList[n]

 else:

 return None

 def __contains__(self,n):

 return n in self.vertList

 def addEdge(self,f,t,cost=0):

 if f not in self.vertList:

 nv = self.addVertex(f)

 if t not in self.vertList:

 nv = self.addVertex(t)

 self.vertList[f].addNeighbor \

 (self.vertList[t], cost)

 def getVertices(self):

 return self.vertList.keys()

 def __iter__(self):

 return iter(self.vertList.values())

4. Section 7.5 uses recursion and the run-time stack to

implement a DFS traversal. The DFSGraph uses a time

attribute to note when a vertex if first encountered

(discovery attribute) in the depth-first search and when a

vertex in backtracked through (finish attribute). Consider

the graph for making pancakes where vertices are steps and

edges represents the partial order among the steps.

3/4 cup "milk"

1 "egg"

1 Tbl "oil"

1 cup "flour"

 "mix" the batter "pour" 1/2 cup

"heat" griddle

"turn" when bubbly

"eat"heat "syrup"

 of batter

a) Assume (why is this a bad assumption???) that the for-loops alway iterate through the vertexes alphabetically (e.g.,

“eat”, “egg”, “flour”, ...) by their id. Write on the above graph the discovery and finish attributes assigned to each

vertex by executing the dfs method?

b) A topological sort algorithm can use the dfs discovery and finish attributes to determine a proper order to avoid

putting the "cart before the horse." For example, we don't want to "pour ½ cup of batter" before we "mix the batter",

and we don't want to "mix the batter" until all the ingredients have been added. Outline the steps to perform a

topological sort.

Data Structures (CS 1520) Lecture 27 Name:_________________

Lecture 27 Page 3

from graph import Graph
class DFSGraph(Graph):

 def __init__(self):
 super().__init__()
 self.time = 0

 def dfs(self):
 for aVertex in self:
 aVertex.setColor('white')
 aVertex.setPred(-1)
 for aVertex in self:
 if aVertex.getColor() == 'white':
 self.dfsvisit(aVertex)

 def dfsvisit(self,startVertex):
 startVertex.setColor('gray')
 self.time += 1
 startVertex.setDiscovery(self.time)
 for nextVertex in startVertex.getConnections():
 if nextVertex.getColor() == 'white':
 nextVertex.setPred(startVertex)
 self.dfsvisit(nextVertex)
 startVertex.setColor('black')
 self.time += 1

 startVertex.setFinish(self.time)

5. Consider the following directed graph (diagraph).

Dijkstra’s Algorithm is a greedy algorithm that finds the shortest path from

some vertex, say v0, to all other vertices. A greedy algorithm, unlike

divide-and-conquer and dynamic programming algorithms, DOES NOT divide

a problem into smaller subproblems. Instead a greedy algorithm builds a

solution by making a sequence of choices that look best ("locally" optimal) at

the moment without regard for past or future choices (no backtracking to fix

bad choices). Dijkstra’s algorithm builds a subgraph by repeatedly selecting

the next closest vertex to v0 that is not already in the subgraph. Initially, only

vertex v0 is in the subgraph with a distance of 0 from itself.

a) What would be the order of vertices added to the subgraph during Dijkstra’s algorithm?

v0,

b) What greedy criteria did you use to select the next vertex to add to the subgraph?

c) What data structure could be used to efficiently determine that selection?

d) How might this data structure need to be modified?

Data Structures (CS 1520) Lecture 27 Name:_________________

Lecture 27 Page 4

0 1

3

2

4

4

1

5 9

3
23

3

4

2
3

v v

v

v
v

