
1. Suppose you had a map of settlements on the planet X

 (Assume edges could connecting all vertices with their Euclidean distances as their costs)

a

b

d

h

e

f

g

c

We want to build roads that allow us to travel between any pair of cities. Because resources are scarce, we want

the total length of all roads build to be minimal. Since all cities will be connected anyway, it does not matter

where we start, but assume we start at “a”.

a) Assuming we start at city “a” which city would you connect first? Why this city?

b) What city would you connect next to expand your partial road network?

c) What would be some characteristics of the resulting "graph" after all the cities are connected?

d) Does your algorithm come up with the overall best (globally optimal) result?

Data Structures (CS 1520) Lecture 28 Name:_________________

Lecture 28 Page 1

2. Prim’s algorithm for determining the minimum-spanning tree of a graph is another example of a greedy

algorithm. Unlike divide-and-conquer and dynamic programming algorithms, greedy algorithms DO NOT divide

a problem into smaller subproblems. Instead a greedy algorithm builds a solution by making a sequence of

choices that look best ("locally" optimal) at the moment without regard for past or future choices (no backtracking

to fix bad choices).

a) What greedy criteria does Prim’s algorithm use to select the next vertex and edge to the partial minimum

spanning tree?

b) Consider the textbook’s Prim’s Algorithm code (Listing 7.12 p. 346) which is incorrect.

def prim(G,start):
 pq = PriorityQueue()
 for v in G:
 v.setDistance(sys.maxsize)
 v.setPred(None)
 start.setDistance(0)
 pq.buildHeap([(v.getDistance(),v) for v in G])
 while not pq.isEmpty():
 currentVert = pq.delMin()
 for nextVert in currentVert.getConnections():
 newCost = currentVert.getWeight(nextVert) \
 + currentVert.getDistance()
 if v in pq and newCost<nextVert.getDistance():
 nextVert.setPred(currentVert)
 nextVert.setDistance(newCost)

 pq.decreaseKey(nextVert,newCost)

c) What is wrong with the code? (Fix the above code.)

3. To avoid “massive” changes to the binHeap class, it can store PriorityQueueEntry objects:

a) Update the above Prim’s algorithm code to use PriorityQueueEntry objects.

b) Why do the __lt__ and __gt__ methods compare key attributes, but __eq__ compare val attributes?

Data Structures (CS 1520) Lecture 28 Name:_________________

Lecture 28 Page 2

class PriorityQueueEntry:

 def __init__(self,x,y):

 self.key = x

 self.val = y

 def getKey(self):

 return self.key

 def getValue(self):

 return self.val

 def setValue(self, newValue):

 self.val = newValue

 def __lt__(self,other):

 return self.key < other.key

 def __gt__(self,other):

 return self.key > other.key

 def __eq__(self, other):

 return self.val == other.val

 def __hash__(self):

 return self.key

c) When used for Prim’s algorithm what type of objects are the vals compared by __eq__?

d) What changes to the Graph and Vertex classes need to be made?

e) Complete the __contains__ and decreaseKey methods.

Data Structures (CS 1520) Lecture 28 Name:_________________

Lecture 28 Page 3

class BinHeap:
 def __init__(self):
 self.heapList = [0]
 self.currentSize = 0

 def buildHeap(self,alist):
 i = len(alist) // 2
 self.currentSize = len(alist)
 self.heapList = [0] + alist[:]
 while (i > 0):
 self.percDown(i)
 i = i - 1

 def percDown(self,i):
 while (i * 2) <= self.currentSize:
 mc = self.minChild(i)
 if self.heapList[i] > self.heapList[mc]:
 tmp = self.heapList[i]
 self.heapList[i] = self.heapList[mc]
 self.heapList[mc] = tmp
 i = mc

 def minChild(self,i):
 if i * 2 + 1 > self.currentSize:
 return i * 2
 else:
 if self.heapList[i*2] < self.heapList[i*2+1]:
 return i * 2
 else:
 return i * 2 + 1

 def percUp(self,i):
 while i // 2 > 0:
 if self.heapList[i] < self.heapList[i//2]:
 tmp = self.heapList[i // 2]
 self.heapList[i // 2] = self.heapList[i]
 self.heapList[i] = tmp
 i = i // 2

 def insert(self,k):
 self.heapList.append(k)
 self.currentSize = self.currentSize + 1
 self.percUp(self.currentSize)

 def delMin(self):
 retval = self.heapList[1]
 self.heapList[1] = self.heapList[self.currentSize]
 self.currentSize = self.currentSize - 1
 self.heapList.pop()
 self.percDown(1)
 return retval

 def isEmpty(self):
 return self.currentSize == 0

 def size(self):
 return self.currentSize

 def __str__(self):
 return str(self.heapList[1:])

 def __contains__(self, value):

 def decreaseKey(self, decreasedValue):

 """Precondition: decreasedValue

 in heap already"""

