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3. Complete the recursive strHelper function inthe  str method for our OrderedList class.

def str (self):
"nr Returns a string representation of the list with a space between each item. """

def strHelper{current):
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return {head} " + strHelper(self. head) + "{tail)" V\
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4. Some m thematlcal concepts are defiriing by recursive definitions. (%@ample is the Fibonacci series:

0,1{1/2,3,5,8,13,21, 34, 55, _%?
After the second mumber, cach number in the series is the sum of the twoprfevious numbers. The Fibonacci series can
be defined recursively as:

Fiby=0

FﬂDs= 1

Fle = FibN.l + FibN.z for N> 2.
a} Complete the recursive function: def fib (n):
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Data Structures (CS 1520) Lecture 9 Name:
¢) On my office computer, the call to fib(40) takes 22 seconds, the call to fib(41) takes 35 seconds, and the call to

fib(42) takes 56 seconds. How long would you expect fib(43) to take? 0[ (
Sec
d) How long would you guess calculati ﬁb( 100) would take on my office computer?
(brp © ? /CArf

e) Why do you suppos thlSlCCUlSlVG ﬁb function is so slow? b
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f) What is the computational complex1ty'7 ({(2 A
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g) How might we speed up the calculation of the’ FlbOH&CCl series?
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5. A VERY POWERFUL concept in Computer Science 1&7!)7}1(11}110 progr ammmg) Dynamic programming solutions
eliminate the redundancy of divide-and-conquer algor ithms & by-caleulating-the solutions to smaller problems first,
storing their answers, and looking up their answers if later needed instead of recalculating them.

We can use a list to store the answers to smaller problems of the Fibonacci sequence.
To transform from the recursive view of the problem to the dynamic programming solution you can do the following
steps:
1) Store the solution to smallest problems (i.e., the base cases) in a list
2) Loop (no recursion) from the base cases up to the biggest problem of interest. On each iteration of the loop we:
* solve the next bigger problem by looking up the solution to previously solved smaller problem(s)
* store the solution to this next bigger problem for later usage so we never have to recalculate it

a) Complete the dynamic programming code:

def fib(n):
""Uhynamic programming solution to find the nth number in the Fibonacci gseg.'"""
# List to hold the solutions to the smaller problems @ mj PUMJI

fibonacci = [] )u...-.'.w»mw_-m,_uw_....h_

# Step 1: Store br:ge case solutions - ;\ C/"‘f)%

fibonacci.append( } 1 O l J 144 0.
C_'\ ) \:/”/ C 7

fibonacci . append | l )

# Step 2: Loop from base cases to biggest pfsgiem of interest

for position in range( \ V\ ‘%ﬂ ' )
fivonacci. append (Y pa ¢¢c [ fostbidin - -]+ honaced L ;ﬁa;r{ﬁc"" ”23)
# return nih number 1 the Eibonaccl sequence
return J.( oA &,C(( }'
Running the above code to calculate ﬁb(l{)O) would only take a fraction of a second.

b) One tradeoff of simple dynamic programming implementations is that they can require more memory since we

store solutions to all smaller problems. Often, we can reduce the amount of storage needed if the next larger problem
(and all the larger problems) don’t really need the soluiion to the really small problems, but just the larger of the
smaller problems. In ﬁbot\ cei when calculating the next value in the sequence how many of the previous solutlons are
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Data Structures (CS 1520) Lecture 10 Name:

I. Consider the coin-change problem: Given a set of coin types and an amount of change to be returned, determine the
fewest number of coins for this amount of change.

e

a) What #gleedy" _algorithm would you use to solve this problem with US coin types of {1, 5, 10, 25, 50} and a change

s

amonnt of 29=cents?
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b) Do you get the correct solution if you use this algorithm for coin types Sf @ 10 /()25 50} and a change
amount of 29-cents? Vi
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2. One way to solve this problem in general is to use a divide-and-conquer algorithm. Recall the idea of

Divide-and-Conguer algorithms. -

Solve a problem by: 1426){ d’ dmw?é

+ dividing it into smaller problem(s) of the same kind , 7

* solving the smaller problem(s) recursively E /f \ 5 ] / (”“)] 1 | s f} 59?

* use the solution(s) to the smaller problem(s) to solve the original problem

a) For the coin-change problem, what determines the size of the problem? &=~ & M v + tj( ’1} Tl ,?é
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b) How could we divide the coin-change problem for 29-cents into smaller problems?

V\e,ﬁvc:e, G R0 v oA o W‘?@

¢) If we knew the solution to these smaller problems, how would be able to solve the original problem?
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Data Structures (CS 1520) Lecture 10 Name:

3. After we give back the first coin, which smaller amounts of change do we have?

Original Problmg &](

29¢ents |

-/ ) B 'A( . Smaller probl T
S Mo Loty Syt Heon SN g

4. If we knew “the fewest number-of coins needed for cach possible smaller problem, thcn how could determine the
fewest number of coins needed for the original problem?

5. Complete a recursive relationship for the fewest number of coins.

min( FewestCoins(c henge¢ = cop ))+ [ if change# CoinSet

29 . . ,
. € CoinSet and coin < change
FewestCoins(change) = § &0 o anecon 8

1 if changee CoinSet

6. Compicte a couple levels of the recursion tree for 29-cents change using the set of coins {1, 5, 10, 12, 25, 50}.

Original Problem _

29 cents
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