Data Structures (CS 1520)	Lecture 10	Name:
1. Consider the coin-change problem: Given fewest number of coins for this amount of ch		ount of change to be returned, determine th
a) What "greedy" algorithm would you use t amount of 29-cents?	o solve this problem with US	coin types of {1, 5, 10, 25, 50} and a chang
b) Do you get the correct solution if you use amount of 29-cents?	this algorithm for coin types	of {1, 5, 10, 12, 25, 50} and a change
 2. One way to solve this problem in general Divide-and-Conquer algorithms. Solve a problem by: dividing it into smaller problem(s) of the solving the smaller problem(s) recursivel use the solution(s) to the smaller problem a) For the coin-change problem, what determ 	same kind y n(s) to solve the original probl	em
b) How could we divide the coin-change pro	oblem for 29-cents into smalle	r problems?
c) If we knew the solution to these smaller p	roblems, how would be able t	o solve the original problem?

Data Structures (CS 1520)

Lecture 10

Name:_____

3. After we give back the first coin, which smaller amounts of change do we have?

Original Problem

- 4. If we knew the fewest number of coins needed for each possible smaller problem, then how could determine the fewest number of coins needed for the original problem?
- 5. Complete a recursive relationship for the fewest number of coins.

$$FewestCoins(change) = \begin{cases} min(FewestCoins()) + & \text{if change} \notin CoinSet \\ coin \in CoinSet \text{ and } coin \leq change \\ 1 & \text{if change} \in CoinSet \end{cases}$$

6. Complete a couple levels of the recursion tree for 29-cents change using the set of coins {1, 5, 10, 12, 25, 50}.

