from entry import Entry

class OpenAddrHashDict(object):
 EMPTY = None # class variables shared by all objects of the class
 DELETED = True

 def __init__(self, capacity=8, hashFunction=hash, linear=True):
 self._table = [OpenAddrHashDict.EMPTY] * capacity
 self._size = 0
 self._hash = hashFunction
 self._homeIndex = -1
 self._actualIndex = -1
 self._linear = linear
 self._probesCount = 0

 def _getItem_(self, key):
 """Returns the value associated with key or returns None if key does not exist."""
 if key in self:
 return self._table[self._actualIndex].getValue()
 else:
 return None

 def _delItem_(self, key):
 """Removes the entry associated with key."""
 if key in self:
 self._table[self._actualIndex] = OpenAddrHashDict.DELETED
 self._size -= 1

 def _setItem_(self, key, value):
 """Inserts an entry with key/value if key does not exist or replaces the existing value with value if key exists."""
 entry = Entry(key, value)
 if key in self:
 self._table[self._actualIndex] = entry
 else:
 self._table[self._actualIndex] = entry
 self._size += 1

 def _contains_(self, key):
 """Return True if key is in the dictionary; return False otherwise""
 entry = Entry(key, None)
 self._probesCount = 0
 # Get the home index
 self._homeIndex = abs(self._hash(key)) % len(self._table)
 rehashAttempt = 0
 index = self._homeIndex
 # Stop searching when an empty cell is encountered
 while rehashAttempt < len(self._table):
 self._probesCount += 1
 if self._table[index] == OpenAddrHashDict.EMPTY:
 self._actualIndex = index
 return False # An empty cell is found, so key not found
 elif self._table[index] == entry:
 self._actualIndex = index
 return True
 # Calculate the index and wrap around to first position if necessary
 rehashAttempt += 1
 if self._linear:
 index = (self._homeIndex + rehashAttempt) % len(self._table)
 else: # Quadratic probing
 index = (self._homeIndex + (rehashAttempt ** 2 + rehashAttempt) // 2) % len(self._table)
 return False # tried all the slots in the hash table and did not find key

 def __len__(self):
 return self._size

 def __str__(self):
 resultStr = ""
 for item in self._table:
 if not item in (OpenAddrHashDict.EMPTY, OpenAddrHashDict.DELETED):
 resultStr = resultStr + " " + str(item)
 return resultStr + ""

 def __iter__(self):
 """Iterates over the keys of the dictionary"""
 for item in self._table:
 if isinstance(item, Entry):
 yield item.getKey()
2. All simple sorts consist of two nested loops where:
 - the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing by one in size each iteration of the outer loop.
 - the inner loop's job is to do the work to extend the sorted part's size by one.

Initially, the sorted part is typically empty. The simple sorts differ in how their inner loops perform their job.

Selection sort is an example of a simple sort. Selection sort's inner loop scans the unsorted part of the list to find the maximum item. The maximum item in the unsorted part is then exchanged with the last unsorted item to extend the sorted part by one item.

At the start of the first iteration of the outer loop, initial list is completely unsorted:

<table>
<thead>
<tr>
<th>Unssorted Part</th>
<th>Empty Sorted Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{mylist}</td>
<td>25 35 20 40 90 60 10 50 45</td>
</tr>
</tbody>
</table>

The inner loop scans the unsorted part and determines that the index of the maximum item, maxIndex = 4.

<table>
<thead>
<tr>
<th>Unssorted Part</th>
<th>Sorted Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 35 20 40 90 60 10 50 45</td>
<td></td>
</tr>
</tbody>
</table>

maxIndex = 4 lastUnsortedIndex = 8

After the inner loop (but still inside the outer loop), the item at maxIndex is exchanged with the item at lastUnsortedIndex. Thus, extending the Sorted Part of the list by one item.

<table>
<thead>
<tr>
<th>Unssorted Part</th>
<th>Sorted Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 35 20 40 45 60 10 50 90</td>
<td></td>
</tr>
</tbody>
</table>

maxIndex = 4 lastUnsortedIndex = 8

a) Write the code for the outer loop

\[
\text{for lastUnsortedIndex in range(len(mylist)-1, 0, -1)}:
\]

b) Write the code for the inner loop to scan the unsorted part of the list to determine the index of the maximum item

\[
\text{maxIndex = 0}
\text{for testIndex in range(1, lastUnsortedIndex + 1)}:
\]

\[
\text{if mylist[testIndex] > mylist[maxIndex]:}
\]

\[
\text{maxIndex = testIndex}
\]

c) Write the code to exchange the list items at positions maxIndex and lastUnsortedIndex.

\[
\text{temp = mylist[maxIndex]}
\text{mylist[maxIndex] = mylist[lastUnsortedIndex]}
\text{mylist[lastUnsortedIndex] = temp}
\]

d) What is the big-oh notation for selection sort?

\[
\text{basic op: compare two items } O(n^2) \text{ moves: } O(n)
\]
3. **Bubble sort** is another example of a simple sort. Bubble sort's inner loop scans the unsorted part of the list comparing adjacent items. If it finds adjacent items out of order, then it exchanges them. This causes the largest item to "bubble" up to the "top" of the unsorted part of the list.

At the start of the first iteration of the outer loop, initial list is completely unsorted:

```
Unsorted Part                              Empty Sorted Part
0 1 2 3 4 5 6 7 8
 myList: 25 35 20 40 90 60 10 50 45
```

The inner loop scans the unsorted part by comparing adjacent items and exchanging them if out of order.

```
Unsorted Part                              Sorted Part
0 1 2 3 4 5 6 7 8                         lastUnsortedIndex = 8
25 35 20 40 90 60 10 50 45
in order, so don't exchange
out of order, so exchange
0 1 2 3 4 5 6 7 8                         in order, so don't exchange
25 20 35 40 90 60 10 50 45
in order, so don't exchange
out of order, so exchange
0 1 2 3 4 5 6 7 8                         in order, so don't exchange
25 20 35 40 60 90 10 50 45
out of order, so exchange
0 1 2 3 4 5 6 7 8                         out of order, so exchange
25 20 35 40 60 10 90 50 45
out of order, so exchange
0 1 2 3 4 5 6 7 8                         out of order, so exchange
25 20 35 40 10 50 90 45
out of order, so exchange
0 1 2 3 4 5 6 7 8                         Out of order, so exchange
25 20 35 40 10 60 50 45
```

After the inner loop (but still inside the outer loop), there is nothing to do since the exchanges occurred inside the inner loop.

a) What would be the worst-case big-oh of bubble sort? $O(n^2)$

b) What would be true if we scanned the unsorted part and didn't need to do any exchanges?

```
we could stop early!
```
4. Another simple sort is called insertion sort. Recall that in a simple sort:
 - the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing by one in size each iteration of the outer loop.
 - the inner loop's job is to do the work to extend the sorted part's size by one.

After several iterations of insertion sort's outer loop, a list might look like:

<table>
<thead>
<tr>
<th>Sorted Part</th>
<th>Unssorted Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5</td>
<td>6 7 8</td>
</tr>
<tr>
<td>10 20 35 40</td>
<td>45 60 25 50 90</td>
</tr>
</tbody>
</table>

In insertion sort the inner-loop takes the "first unsorted item" (25 at index 6 in the above example) and "inserts" it into the sorted part of the list "at the correct spot." After 25 is inserted into the sorted part, the list would look like:

<table>
<thead>
<tr>
<th>Sorted Part</th>
<th>Unssorted Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5</td>
<td>6 7 8</td>
</tr>
<tr>
<td>10 20 25 35</td>
<td>40 45 60 50 90</td>
</tr>
</tbody>
</table>

Code for insertion is given below:

```python
def insertionSort(myList):
    """Rearranges the items in myList so they are in ascending order""
    for firstUnsortedIndex in range(1, len(myList)):
        itemToInsert = myList[firstUnsortedIndex]
        testIndex = firstUnsortedIndex - 1
        while testIndex >= 0 and myList[testIndex] > itemToInsert:
            myList[testIndex+1] = myList[testIndex]
            testIndex = testIndex - 1
        myList[testIndex+1] = itemToInsert
```

a) What is the purpose of the `testIndex >= 0` while-loop comparison? Stop loop when scanned all the way off left-end of sorted part.

b) What initial arrangement of items causes the is the overall worst-case performance of insertion sort?
 - `descending order` \(O(n^2) \)

c) What is the worst-case \(O() \) notation for the number of item moves?
 - \(O(n^2) \)

d) What is the worst-case \(O() \) notation for the number of item comparisons?

e) What initial arrangement of items causes the is the overall best-case performance of insertion sort?
 - `ascending order` \(O(n) \)

f) What is the best-case \(O() \) notation for insertion sort?
Selection Sort:

\[
\begin{align*}
0 & \quad \text{sorted} \\
(\text{unsorted}) & \quad \text{sorted} \\
0 & \quad \text{sorted} \\
(\text{unsorted}) & \quad \text{sorted} \\
0 & \quad \text{sorted} \\
\end{align*}
\]

\[
0 \quad \text{sorted}
\]

\[
\frac{n^2 - n}{2} = n\frac{n-1}{2}
\]

\[
O(n^2)
\]
Bubble sort (ascending)

for lastUnsorted in range(len(myList)-1, 0, -1):
 unsortedInOrder = True
 for testIndex in range(0, lastUnsorted):
 if myList[testIndex] > myList[testIndex+1]:
 unsortedInOrder = False
 temp = myList[testIndex+1]
 myList[testIndex] = myList[testIndex+1]
 myList[testIndex+1] = temp

Worst case - descending initially

\[
\begin{array}{c}
100 \\
90 \\
80 \\
60 \\
10 \\
\end{array}
\]
\[
\frac{\frac{n-1}{n \left(\frac{n-1}{2} \right)}}{m^2} \approx C \quad (m^2)
\]