
1. Python 3.x vs. 2.x Changes:

� The print statement has been replaced with a print() function, with keyword arguments to replace most of

the special syntax of the old print statement. New function syntax:

print(value,...,sep=' ',end='\n', file=sys.stdout)

a) Predict the expected output of each of the following.

print('cat',5,end='')

print(' horse')

print('cow')

print 'cat',5,

print 'horse'

print 'cow'

print()print

print('cat',5,'dog')print 'cat',5,'dog'
Expected OutputVersion 3.xVersion 2.x

print ('cat',5,'dog',sep='>'*3)

print ('cat',5,'dog',sep='23','horse')

print ('cat',5,'dog',end='#',sep='23')

print ('cat',5,'dog',sep='23',end='#')
Expected OutputVersion 3.x

� The range() now behaves like xrange() of version 2.x. The xrange() function no longer exists in

version 3.

� raw_input() was renamed to input(). That is, the new input() function reads a line from sys.stdin and

returns it as a string with the trailing newline stripped. It raises EOFError if the input is terminated

prematurely. To get the old behavior of input(), use eval(input()).

 Example, use a for loop to generate a sequence of values one at a time for each iteration of the loop:
n = eval(input("Enter # of iterations? "))

for count in range(n):

 print(count, end=" ")

print("\nDone")

� Removed <> as an alternate “not equal” operator, so use != instead.

� There is only one built-in integral type, named int. It behaves like the old long type.

� An expression like 1/2 returns a float. Use 1//2 to get the truncating “integer division” behavior of version 2.

� Dictionary methods dict.keys(), dict.items() and dict.values() return interable “views”

instead of lists. For example, this no longer works: keyList = d.keys(); keyList.sort().

Use keyList = sorted(d) instead.

(Also, the dict.iterkeys(), dict.iteritems() and dict.itervalues() methods are no longer supported.)

2. Review of assignment statements. Predict the output of the following programs

:

c = 'cat'
d = c
c += 'fish'
print('c is', c)
print('d is', d)

Data Structures (CS 1520) Lecture 1 Name:_____________________

Lecture 1 Page 1

Enter # of iterations? 6

0 1 2 3 4 5

Done

a = 123
b = a
a += 1
print ('a is', a)
print ('b is', b)
print()

c = ['cat', 'dog']
d = c
c.append('cow')
print('c is', c)
print('d is', d)

3. Design a program to roll two 6-sided dice 1,000 times to determine the percentage of each outcome (i.e., sum of

both dice). Report the outcome(s) with the highest percentage.

Most simple programs have a similar functional-decomposition design pattern:

main

initialization

calculate

display results

- welcome user
- initialize variables
- prompt for input

- compute answer

subtask 1 subtask 2

input, initialize variables

input
params.

results
params.

results params.

a) Customize the diagram for the dice problem by briefly describing what each function does and what parameters

are passed.

b) An alternative design methodology is to use object-oriented design. For the above dice problem, what objects

would be useful and what methods (operations on the objects) should each perform?

Data Structures (CS 1520) Lecture 1 Name:_____________________

Lecture 1 Page 2

