Data Structures (CS 1520) Lecture 1 Name:

1. Python 3.x vs. 2.x Changes:

* The print statement has been replaced with a print () function, with keyword arguments to replace most of
the special syntax of the old print statement. New function syntax:

print(value, ...,sep=" ',end='\n', file=sys.stdout)

a) Predict the expected output of each of the following.

Version 2.x Version 3.x Expected Output
print 'cat',5, 'dog' print('cat',5, 'dog')

print print ()

print 'cat',>5, print('cat',5,end="")

print 'horse' print (' horse')

print 'cow' print ('cow')

Version 3.x Expected Output
print ('cat',5,'dog',sep='23",end="#")

print ('cat',5,'dog',end="#"',sep="'23")

print ('cat' 5,'dog',sep="'23", 'horse"')

print ('c ,5,'dog', sep=">"'*3)

* The range () now behaves like xrange () of version 2.x. The xrange () function no longer exists in
version 3.

* raw_input () wasrenamed to input (). Thatis, the new input () function reads a line from sys.stdin and
returns it as a string with the trailing newline stripped. It raises EOFError if the input is terminated
prematurely. To get the old behavior of input (), use eval (input()).

Example, use a for loop to generate a sequence of values one at a time for each iteration of the loop:
n = eval (input ("Enter # of iterations? "))
for count in range (n): Enter # of iterations? 6
print (count, end=" ") o 1 2 3 4 5
print ("\nDone") Done

* Removed <> as an alternate “not equal” operator, so use ! = instead.

* There is only one built-in integral type, named int. It behaves like the old 1ong type.

* An expression like 1/2 returns a float. Use 1//2 to get the truncating “integer division” behavior of version 2.
* Dictionary methods dict.keys (), dict.items () and dict.values () return interable “views”
instead of lists. For example, this no longer works: keyList = d.keys(); keyList.sort ().

Use keyList = sorted(d) instead.
(Also, the dict.iterkeys(), dict.iteritems() and dict.itervalues() methods are no longer supported.)

2. Review of assignment statements. Predict the output of the following programs

a = 123 c = 'cat'

b =a d =c

a +=1 c += 'fish'
print ('a is', a) print('c is', c)
print ('b is', b) print('d is', d)
print ()

c = ['cat', 'dog'l]

d = c

c.append('cow')

print('c is', c¢)

print('d is', d)

Lecture 1 Page 1

Data Structures (CS 1520) Lecture 1 Name:

3. Design a program to roll two 6-sided dice 1,000 times to determine the percentage of each outcome (i.e., sum of
both dice). Report the outcome(s) with the highest percentage.

Most simple programs have a similar functional-decomposition design pattern:

. __y» main .
... 110 variables esults pary
input, initializ® input | | Aresults ms. —p
T . params¢ ?params. .
initialization display results
- welcome user calculate
- initialize variables - compute answer
- prompt for input /\
subtask 1 subtask 2

a) Customize the diagram for the dice problem by briefly describing what each function does and what parameters
are passed.

b) An alternative design methodology is to use object-oriented design. For the above dice problem, what objects
would be useful and what methods (operations on the objects) should each perform?

Lecture 1 Page 2

