
1. An AVL Tree is a special type of Binary Search Tree (BST) that it is height balanced. By height balanced I mean

that the height of every node’s left and right subtrees differ by at most one. This is enough to guarantee that a AVL

tree with n nodes has a height no worst than O(1.44 log2 n). Therefore, insertions, deletions, and search are worst case

O(log2 n). An example of an AVL tree with integer keys is shown below. The height of each node is shown.

50

30 60

9 34

32 47

80

0

0 0

0 1

2 1

3

Each AVL-tree node usually stores a balance factor in addition to its key and payload. The balance factor keeps track

of the relative height difference between its left and right subtrees, i.e., height(left subtree) - height(right subtree).

a) Label each node in the above AVL tree with one of the following balance factors:

� 0 if its left and right subtrees are the same height

� 1 if its left subtree is one taller than its right subtree

� -1 if its right subtree is one taller than its left subtree

b) We start a put operation by adding the new item into the AVL as a leaf just like we did for Binary Search Trees

(BSTs). Add the key 90 to the above tree.

c) Identify the node “closest up the tree" from the inserted node (90) that no longer satisfies the height-balanced

property of an AVL tree. This node is called the pivot node. Label the pivot node above.

d) Consider the subtree whose root is the pivot node. How could we rearrange this subtree to restore the AVL height

balanced property? (Draw the rearranged tree below)

30

9 34

32 47

0 0

0 1

2

Data Structures (CS 1520) Lecture 23 Name:________________

Lecture 23 Page 1

2. Typically, the addition of a new key into an AVL requires the following steps:

� compare the new key with the current tree node’s key (as we did in the _put function called by the put method

in the BST) to determine whether to recursively add the new key into the left or right subtree

� add the new key as a leaf as the base case(s) to the recursion

� recursively (updateBalance method) adjust the balance factors of the nodes on the search path from the new node

back up toward the root of the tree. If we encounter a pivot node (as in question (c) above) we perform one or two

“rotations” to restore the AVL tree’s height-balanced property.

For example, consider the previous example of adding 90 to the AVL tree. Before the addition, the pivot node (60)

was already -1 (“tall right” - right subtree had a height one greater than its left subtree). After inserting 90, the pivot’s

right subtree had a height 2 more than its left subtree (balance factor -2) which violates the AVL tree’s height-balance

property. This problem is handled with a left rotation about the pivot as shown in the following generalized diagram:

Before the addition: After the addition, but before rotation:

After left rotation at pivot:

B B

B

D D

D

 -1 -2

 0

 0 -1

 0

from parent from parent

from parent

T

T

T

T T

T

T T

T

E

E

C

A A

A

E C

C

height

height

height

height height

height

height height

height

 n

 n

 n - 1

 n - 1 n - 1

 n - 1

 n - 1 n - 1

 n - 1

new

new

node

node

Recursive updateBalance method finds the pivot

 (D's balance factor was already adjusted before

 the pivot is found by the recursive updateBalance

and calls the rebalance method to perform proper rotation(s)

Rotate

Left at

Pivot

 method which moves toward the root)

a) Assuming the same initial AVL tree (upper, left-hand of above diagram) if the new node would have increased the

height of TC (instead of TE), would a left rotation about the node B have rebalanced the AVL tree?

Data Structures (CS 1520) Lecture 23 Name:________________

Lecture 23 Page 2

b) Before the addition, if the pivot node was already -1 (tall right) and if the new node is inserted into the left subtree

of the pivot node's right child, then we must do two rotations to restore the AVL-tree’s height-balance property.

Before the addition: After the addition, but before first rotation:

After right rotation at F, but

 before left rotation at pivot:

After the left rotation at pivot and

from parent from parent

from parentfrom parent

T T

T

T

T T

T
T

T T

T

T

T T

T

T

E E

E

E

C C

C
C

A A

A

A

G G

G

G

height height

height

height

height height

height
height

height height

height

height

height height

height

height

 n - 2 n - 1

 n - 1

 n - 1

 n - 2 n - 2

 n - 2
 n - 2

 n - 1 n - 1

 n - 1

 n - 1

 n - 1 n - 1

 n - 1

 n - 1

new

new

new

node

node

node

Recursive updateBalance finds the pivot

 D's & F's balance factors have

 already been adjusted before

and calls rebalance method to perform rotation(s)

Rotate

1st Rotate

Left at

Right at

Pivot

 Node F

D D

D

D

F F

F

F

B B

B

B

 0 -1

 -2

 0

 0 1

 0

 0

 -1 -2

 -2

 1

 the pivot was found

balance factors adjusted correctly:

b) Suppose that the new node was added in TC instead of TE, then the same two rotations would restore the

AVL-tree’s height-balance property. However, what should the balance factors of nodes B, D, and F be after the

rotations?

Data Structures (CS 1520) Lecture 23 Name:________________

Lecture 23 Page 3

Consider the AVLTreeNode class that inherits and extends the TreeNode class to include balance factors.

from tree_node import TreeNode

class AVLTreeNode(TreeNode):

 def __init__(self,key,val,left=None,right=None,parent=None, balanceFactor=0):

 TreeNode.__init__(self,key,val,left,right,parent)

 self.balanceFactor = balanceFactor

Now let’s consider the partial AVLTree class code that inherits from the BinarySearchTree class:

from avl_tree_node import AVLTreeNode

from binary_search_tree import BinarySearchTree

class AVLTree(BinarySearchTree):

 def put(self,key,val):

 if self.root:

 self._put(key,val,self.root)

 else:

 self.root = AVLTreeNode(key,val)

 self.size = self.size + 1

 def _put(self,key,val,currentNode):

 if key < currentNode.key:

 if currentNode.hasLeftChild():

 self._put(key,val,currentNode.leftChild)

 else:

 currentNode.leftChild = AVLTreeNode(key,val,parent=currentNode)

 self.updateBalance(currentNode.leftChild)

 elif key > currentNode.key:

 if currentNode.hasRightChild():

 self._put(key,val,currentNode.rightChild)

 else:

 currentNode.rightChild = AVLTreeNode(key,val,parent=currentNode)

 self.updateBalance(currentNode.rightChild)

 else:

 currentNode.payload = val

 def updateBalance(self,node):

 if node.balanceFactor > 1 or node.balanceFactor < -1:

 self.rebalance(node)

 return

 if node.parent != None:

 if node.isLeftChild():

 node.parent.balanceFactor += 1

 elif node.isRightChild():

 node.parent.balanceFactor -= 1

 if node.parent.balanceFactor != 0:

 self.updateBalance(node.parent)

 def rotateLeft(self,rotRoot): ## NOTE: You will complete rotateRight in Lab

 newRoot = rotRoot.rightChild

 rotRoot.rightChild = newRoot.leftChild

 if newRoot.leftChild != None:

 newRoot.leftChild.parent = rotRoot

 newRoot.parent = rotRoot.parent

 if rotRoot.isRoot():

 self.root = newRoot

 else:

 if rotRoot.isLeftChild():

 rotRoot.parent.leftChild = newRoot

 else:

 rotRoot.parent.rightChild = newRoot

 newRoot.leftChild = rotRoot

 rotRoot.parent = newRoot

 rotRoot.balanceFactor = rotRoot.balanceFactor + 1 - min(newRoot.balanceFactor, 0)

 newRoot.balanceFactor = newRoot.balanceFactor + 1 + max(rotRoot.balanceFactor, 0)

 def rebalance(self,node):

 if node.balanceFactor < 0:

 if node.rightChild.balanceFactor > 0:

 self.rotateRight(node.rightChild)

 self.rotateLeft(node)

 else:

 self.rotateLeft(node)

 elif node.balanceFactor > 0:

 if node.leftChild.balanceFactor < 0:

 self.rotateLeft(node.leftChild)

 self.rotateRight(node)

 else:

 self.rotateRight(node)

Data Structures (CS 1520) Lecture 23 Name:________________

Lecture 23 Page 4

c) Trace the code for myAVL.put(90,None)by updating the below diagram:

myAVL AVLTree object

size

root

60

80

50

-1

0

1

30

9 34

32 47

Consider balance factor formulas for rotateLeft. We know: newBal(B) = hA - hC and oldBal(B) = hA - (1+max(hC, hE))

 newBal(D) = 1+ max(hA, hC) - hE and oldBal(D) = hC - hE

Consider: newBal(B) - oldBal(B)

newBal(B) - oldBal(B) = hA - hC - hA + (1+max(hC, hE))

newBal(B) - oldBal(B) = 1 + max(hC, hE) - hC

newBal(B) - oldBal(B) = 1 + max(hC, hE) - hC

newBal(B) = oldBal(B) + 1 + max(hC - hC, hE - hC)

newBal(B) = oldBal(B) + 1 + max(0, -oldBal(D))

newBal(B) = oldBal(B) + 1 - min(0, oldBal(D)), so

rotRoot.balanceFactor = rotRoot.balanceFactor + 1 -

 min(newRoot.balanceFactor, 0)

Data Structures (CS 1520) Lecture 23 Name:________________

Lecture 23 Page 5

After left rotation at pivot:Before left rotation:

B

B
D

D

rotRoot newRoot

rotRoot

newRoot

T

T
T

T
h

h
h

h
h

h
T

T

E

E
A

A
A

A
C

C
E

E

C
C

height

height
height

height
height

height

Rotate

Left at

Pivot

d) Consider: newBal(D) - oldBal(D)

 0 x-x y-y

max(x, y) = y

min(x, y) = x

-min(-x, -y) = y

-max(-x, -y) = x

3. Complete the below figure which is a “mirror image” to the figure on page 2, i.e., inserting into the pivot’s left

child’s left subtree. Include correct balance factors after the rotation.

Before the insertion: After the insertion, but before rotation:

After right rotation at pivot:

D D

B B

 1 2

 0 1

from parent from parent

TT

T T

T T

E

C A A

E

C

heightheight

height height

height height
 n n - 1

 n - 1 n - 1

 n - 1 n - 1

new
node

Rotate

Right at

Pivot

b) Complete the below figure which is a “mirror image” to the figure on page 3, i.e., inserting into the pivot’s left

child’s right subtree. Include correct balance factors after the rotation.

Before the insertion: After the insertion, but before first rotation:

After left rotation at B, but

 before right rotation at pivot:

After the right rotation at pivot and

from parent from parent

T TT T

T T

T T

E E C C
A A

G G

height heightheight height

height height

height height
 n - 2 n - 1 n - 2 n - 2

 n - 1 n - 1

 n - 1 n - 1

new

node

D D

B B

F F

 0 1

 0 -1

 1 2

balance factors adjusted correctly:

Data Structures (CS 1520) Lecture 23 Name:________________

Lecture 23 Page 6

