
1.  An alternative to functional-decomposition design is to use object-oriented design(OOD).  For the following

program, what objects would be useful and what methods (operations on the objects) should each support?

“Write a program to roll two 6-sided dice 1,000 times to determine the percentage of each outcome (i.e., sum

  boths dice).  Report the outcome(s) with the highest percentage.” (You only need consider the program’s OOD)

2.  Consider the Die and AdvancedDie classes from the Python Summary handed out last class.  

a)  What data attributes of AdvancedDie are inherited from the parent Die class?

b)  What new data attributes are added as part of the subclass AdvancedDie?

c)  Which Die class methods are used directly for an AdvancedDie object?

d)  Which Die class methods are redefined/overridden by the AdvancedDie object?

e)  Which methods are new to the AdvancedDie class and not in the Die class?

f)  If  die1 and  die2 are AdvancedDie objects, then the statement “if die1 == die2:” invokes the __eq__ method

of AdvancedDie with die1 “passed” as  self and  die2 passed as rhs_Die.  
  def __eq__(self, rhs_Die):

"""Overrides default '__eq__' operator to allow for deep comparison of dice"""

      return self._currentRoll == rhs_Die._currentRoll

What would the code be for AdvancedDie __le__ method to allow for the  “if die1 <= die2:” statement?

g)  Good software engineering practice is to include precondition and postcondition comments on each

method/function where the:

� precondition - indicates what must be true for the method to work correctly.  Typically, the precondition describes

the valid values of the parameters. If the precondition is not satisfied, the method does not need to work correctly!

� postcondition - describes the expected state after the method has executed  

Consider the AdvancedDie constructor:
class AdvancedDie(Die):

    """Advanced die class that allows for any number of sides"""

    def __init__(self, sides = 6):

        """Constructor for any sided Die that takes an the number of sides 

        as a parameter; if no parameter given then default is 6-sided."""
        

        Die.__init__(self)  # call Die parent class constructor

        self._numSides = sides

        self._currentRoll = randint(1, self._numSides)

What precondition and postcondition comments should we add?

h)  If a method/function has a precondition that is not met when invoked (e.g., die1 = AdvancedDie("six")), why

should the method raise an error? 
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3.  Terminology:

problem - question we seek an answer for, e.g., "What is the sum of all the items in a list/array?"

parameters - variables with unspecified values

problem instance - assignment of values to parameters, i.e., the specific input to the problem

myList: 10 2 15 205 1 11

0 1 2 3 4 5 6

(number of elements) 7

sum: ?

n:

algorithm - step-by-step procedure for producing a solution

basic operation - fundamental operation in the algorithm (i.e., operation done the most)  Generally, we want to derive

a function for the number of times that the basic operation is performed related to the problem size.

problem size - input size.  For algorithms involving lists/arrays, the problem size is the number of elements (“n”).

Big-oh notation (O( ) - As the size of a problem grows (i.e., more data), how will our program’s run-time grow.

Consider the following sumList function.

def sumList(myList):

    """Returns the sum of all items in myList"""

    total = 0

    for item in myList:

        total = total + item

    return total

a)  What is the basic operation of sumList (i.e., operation done the most) ?

b)  What is the problem size of sumList?

c)  If n is 10000 and sumList takes 10 seconds, how long would you expect sumList to take for n of 20000?

d)  What is the big-oh notation for sumList?  

4.  Consider the following someLoops function.

def someLoops(n):

    total = 0

    for i in range(n):

        for j in range(n):

            total = total + i + j

    return total

a)  What is the basic operation of someLoops (i.e., operation done the most)?

b)  How many times will the basic operation execute as a function of  n?

c)  What is the big-oh notation for someLoops?

d)  If we input n of 10000 and someLoops takes 10 seconds, how long would you expect someLoops to take for

n of 20000?
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Execution flow
i = 0 i = 1 i = 2 i = n-1

j = 0 to n-1 j = 0 to n-1 j = 0 to n-1

loops n times loops n times loops n times

. . .


