
1. Draw the graph for sumList (O(n)) and someLoops (O(n2)) from the previous lecture.

10,000 20,000 30,000 40,000 50,000 60,000

10 sec

30 sec

50 sec

20 sec

40 sec

60 sec

n

E
x

ec
u

ti
o

n
 T

im
e

2. Consider the following sumSomeListItems function.

import time

def main():
 n = eval(input("Enter size of list: "))
 aList = list(range(1, n+1))
 start = time.clock()
 sum = sumSomeListItems(aList)
 end = time.clock()
 print("Time to sum the list was %.9f seconds" % (end-start))

def sumSomeListItems(myList):
 """Returns the sum of some items in myList"""
 total = 0
 index = len(myList) - 1
 while index > 0:
 total = total + myList[index]
 index = index // 2

 return total

main()

a) What is the problem size of sumSomeListItems?

b) If we input n of 10,000 and sumSomeListItems takes 10 seconds, how long would you expect

sumSomeListItems to take for n of 20,000?

(Hint: For n of 20,000, how many more times would the loop execute than for n of 10,000?)

c) What is the big-oh notation for sumSomeListItems?

d) Add the execution-time graph for sumSomeListItems to the graph.

Data Structures (CS 1520) Lecture 3 Name:_____________________

Lecture 3 Page 1

3.
i = 1
while i <= n:
 for j in range(n):

 # something of O(1)

 # end for
 i = i * 2
end while

a) Analyze the above algorithm to determine its big-oh notation, O().

b) If n of 10,000, takes 10 seconds, how long would you expect the above code to take for n of 20,000?

c) Add the execution-time graph for the above code to the graph.

4. Most programming languages have a built-in array data structure to store a collection of same-type items.

Arrays are implemented in RAM memory as a contiguous block of memory locations. Consider an array X that

contains the odd integers:

a) Any array element can be accessed randomly by calculating its address. For

example, address of X[5] = 4000 + 5 * 4 = 4020. What is the general formula for

calculating the address of the ith element in an array?

b) What is the big-oh notation for accessing the ith element?

c) A Python list uses an array of references (pointers) to list items in their implementation of a list. For example, a

list of strings containing the alphabet:

'a' 'b' 'c' 'z'

0 1 2 3 (len()-1)

...

Since a Python list can contain heterogeneous data, how does storing references in the list aid implementation?

Data Structures (CS 1520) Lecture 3 Name:_____________________

Lecture 3 Page 2

Execution flow
i = 1 i = 2 i = 4 i = n

j = 0 to n-1 j = 0 to n-1 j = 0 to n-1

loops n times loops n times loops n times

. . .

address
Memory

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

 1

 3

 5

 7

 9

11

13

4000

4004

4008

4012

4016

4020

4024.
..

5. Arrays in most HLLs are static in size (i.e., cannot grow at run-time), so arrays are constructed to hold the

“maximum” number of items. For example, an array with 1,000 slots might only contain 3 items:

0 1 2 3 999

20 10 30scores:size: 3

a) The physical size of the array is the number of slots in the array. What is the physical size of scores?

b) The logical size of the array is the number of items actually in the array. What is the logical size of scores?

c) The load factor is faction of the array being used. What is the load factor of scores?

d) What is the O() for “appending” a new score to the “right end” of the array?

e) What is the O() for adding a new score to the “left end” of the array?

f) What is the average O() for adding a new score to the array?

g) During run-time if an array fills up and we want to add another item, the program can usually:

� Create a bigger array than the one that filled up

� Copy all the items from the old array to the bigger array

� Add the new item

� Delete the smaller array to free up its memory

When creating the bigger array, how much bigger than the old array should it be?

h) What is the O() of moving to a larger array?

6. Consider the following list methods in Python:

myList.reverse()reverse

for item in myList:iteration

myList.index(item)index

myList.remove(item)remove

del myList[i]del

myList.pop(i)pop(i)

myList.pop()pop

myList.insert(i, item)insert

myList.extend(otherList)extend

myList.append(item)append

myList[i] = newValue

itemValue = myList[i]
index []

Average O() for myList containing n itemsUsageMethod

Dictionary Operations:

O(1)Deletes the mykey:value pair del myDictionary[myKey]del

O(1)
Returns True if myKey is in

myDictionary; otherwise False
myKey in myDictionaryin

O(1)Change or add myKey:value pairmyDictionary[myKey]=valueset item

O(1)
Returns the value associated with

myKey; otherwise None

myDictionary.get(myKey)
value = myDictionary[myKey]get item

Average O() for n keysExplanationUsageMethod

Data Structures (CS 1520) Lecture 3 Name:_____________________

Lecture 3 Page 3

