Data Structures (CS 1520)

Lecture 6 Name: Mﬂf‘" I< F{,
A Deque (pronounced “Deck”) is a linear data structure which behaves like a double-ended queue, i.e., it allows adding
or removing items from either the front or the rear of the Deque
addRear(newltem) D addFront(newItem)
\’ rear eque front

«—
f

removeRear ()

removeFront()
I

One possible implementation of a Deque would be to use a Python hst to store the Deque items such that
the rear item is always stored at index 0,

the front item is always stored at the highest index (or -1)

‘Deque Object

class Deque (object):
def _ init___(self}:

5,€{-R HeMS - [7

a) Complete the _ init__

method and determine the big-oh, O (), for each Deque operation, assummg the above
implementation. Let n be the number of items in the Deque.
isEmpty addFront removeFront addRear removeRear size
pC1) | 6u) [oC) 1 [oln)Toln)

o])

b) Write the methods for the addRear and removeRear operation
def addRear (self, newItem):

def removeRear(se;f):
setf Wangginge (O, ﬂew'iileﬂd V“Q‘ft”fc{r o sell, iten S,@O P (o)

2. An alternative implementation of a

eque would be a linked 11nplementauon as in:
¢ . /, S .
LinkedDeque Object / data next data next \ /data next / data next ClaSS LinkedDeque (object):
g { . J/ L /’ i K def __init__ {(self):
_rear: a 3 b ——7—\5 S N d J
\\ / L e W\/ \\. 7 Se '{\ ear = NOAQ
_front! — So r {'\ i
P 1o [7071 A/u)fte
SiZC: 4 ,.,f"'”'/wﬂﬁ'“ . {‘;é ,'ﬁ, - '5 (r}‘? = C:?
_ V‘ _m_,,r——"‘""r_"
a) Cogn__ ctethe _—init__ method and determine the big-oh, O (), for each Deque operation assuming the above
linked implementation. Let n be the number of items in the Deque.
isEmpty addFront removeFront addRear removeRear size
o [o) on) 1ol) [o(

Lot)
b) Suggest an improvement to the above lmked implementation of the Deque to speed up some of its operations.

ﬂw/é[yw’m C,oﬂ ¢ g‘il

Lecture 6 - Page 1

Data Structures (CS 1520) | Lecture 6 Name:

from node import Node

class NodeZWay {Node) :
def __init_ {self,initdata):
Node.__init__(self, initdata)
self.previous = None

def getPrevious{self):
return self.previous

def setPrevious{self, newprevious):
self.previous = newprevious

3. An alternative implementation of a Deque would be a doubly-linked implementation as in: y*@‘{\s’ A
)"
f)oublyLmkedDeque Object @ Lﬁ/@é;
C;Q, previous data nexi previous data next previous data nkxt p1ev10us datal next

\ aat ——’_ ib! <—

(‘WQ@ Da Abpd Péé}e)

a) Determine the big-oh, O (), for each Deque operation assuming the above doubly-linked implementation. Let n be

the number of items in the Deque.
isEmpty addFront removeFront addRear removeRear size

D010l TOo(1]106) Toa) lav

4. A priority quene has the same operations as a regular queue, except the items are NOT returned in the FIFO
(first-in, first-out) order. Instead, each item has a proirity that determines the order they are removed. A hospital
emergence room operates like a priority queue -- the person with the most serious injure has highest priority even if
they just arrived.

a) Suppose that we have a priority queue with integer priorities such that the smallest integer corresponds to the
highest priority. For the following priority queue, which item would be dequeued next?

priority queue:

b) To implement a priority queue, we could use an unorder Python list. If (we did, what would be the big-oh notation

for each of the following methods: (justify your answer) LA e .
/ Yo [15@) l§ 7@; ?f?

*+ enqueue: O{l !'O
* dequeue: QJ/\) O(ﬂ) ‘\
¢) To implement a priority queue, we could use a Python list order by priorities in decendmg order. If we did, what
would be the big-oh notation for each of the following methods: (ustify your answer) .
* enqueune O (y\) f ?0! 13 R ER A DU
* dequeue ((1 B /» - lBu - (2\5? llg,l . (
ZTP”’ZZL:; (U ascondes, oder év H\)’““ ey - n

U\? weve (ﬂ) (9@-? (eve (ﬂ))) ? ([@ / /3’ ?L\ (éi&%t«)re 6 - Page 2

Dé7a;€. VeMove ﬂm% W ocell s = =)

Prafs§e. Ualu E/”f()f'((éfﬂf\cﬁ[

/V o f*%w[(C' 2 y‘g (Q, &ég N remove Fvant .{3?),;} zjgfg’ /)

o SR self sipe =
— / ,\5“‘(-ear ‘?“!VM@
Wf_é’*“«,ﬂ - se (-’F e F"@zf elser

@ Ter*y% 3@1“P reyiovs),se‘f“/\/e,xiﬁ/;_ Nowe)
(5) sel,_Pont = terp. get Previves(
@ sell _gize —= |

) Peturn ‘ILW%, cjd@ﬁ*fﬁ/)

S{ﬂecw C‘%’[(?ji?

l

() QM/O) Dé?f?“@ "’”P"“@(‘G)ﬁa/ D radss g%?f;mf
(‘L\ Femeve C)/\y {‘4{72"]

Lec.b-3

Data Structures (CS 1520) Lecture 7 Name:

1. Section 6.6 discusses a very “non-intuitive”, but powerful li ay-based approach to implement a priority queue,

call a binary heap. The list/array is used to store a cornplete(wﬁnagﬁ tree (a full tree with any additional leaves as far left
as possible) with the items being arranges by heap-order property, i.e., each node is < either of its childrep. An
example of a min heap “viewed” an a complete binary tregwwould be: {% Ve (s

Python List actually used 6 115 110 J11a 20 [20 |50 [300 125 [117
to store heap items -
=

a) For the above heap, the list/array indexes are indicated in []'s. For a node at index /, what is the index of:
« jts left child if it exists: ,i st a
* its right child if it exists: ‘J‘!:““"?"' 2 -+

= .
* its parent if it exists: jl\f/ / 2

b) What would the above heap look like after inserting 13 and then 3? (show the changes on above tree)

General Idea of insert{newltem):
» append newltem to the end of the list (easy to do, but violates heap-order proper[y)
* restore the heap-order property by repeatedly swapping the newltem with its parent until it percolates to correct spot

¢) What is the big-oh notation for inserting a new item in the heap?

d) Complete the code for the percUp method used by insert.

class BinHeap: .
def __init___{self}:
self . heapList = {0}
self.currentSize = 0

def percUp(self,currentIndex):
parentIndex =
while

def insert(self,k):
self heapList.append{k)
self.currentSize = self.currentSize + 1
gelf .percUp{self.currentSize)

Lecture 7 - Page 1

