A Deque (pronounced “Deck”) is a linear data structure which behaves like a double-ended queue, i.e., it allows adding or removing items from either the front or the rear of the Deque.

- **addFront**, **addRear**, **removeFront**, **removeRear**

1. One possible implementation of a Deque would be to use a Python list to store the Deque items such that
 - the rear item is **always stored at index 0**,
 - the front item is always stored at the highest index (or -1)

```
Deque Object       List Object
items: [ ] 0 1 2 3
(rear) (front)
```

a) Complete the `__init__` method and determine the big-oh, $O()$, for each Deque operation, assuming the above implementation. Let n be the number of items in the Deque.

<table>
<thead>
<tr>
<th>isEmpty</th>
<th>addFront</th>
<th>removeFront</th>
<th>addRear</th>
<th>removeRear</th>
<th>size</th>
</tr>
</thead>
</table>

b) Write the methods for the **addRear** and **removeRear** operation.

```
def addRear(self, newItem):

def removeRear(self):
```

2. An alternative implementation of a Deque would be a linked implementation as in:

```
LinkedDeque Object
_rear: data next  [a]  [b]  [c]  [d]
_front: data next
_size: 4
```

a) Complete the `__init__` method and determine the big-oh, $O()$, for each Deque operation assuming the above linked implementation. Let n be the number of items in the Deque.

<table>
<thead>
<tr>
<th>isEmpty</th>
<th>addFront</th>
<th>removeFront</th>
<th>addRear</th>
<th>removeRear</th>
<th>size</th>
</tr>
</thead>
</table>

b) Suggest an improvement to the above linked implementation of the Deque to speed up some of its operations.
3. An alternative implementation of a Deque would be a doubly-linked implementation as in:

DoublyLinkedDeque Object

- rear:
- front:
- size: 4

a) Determine the big-oh, $O(n)$, for each Deque operation assuming the above doubly-linked implementation. Let n be the number of items in the Deque.

<table>
<thead>
<tr>
<th>isNotEmpty</th>
<th>addFront</th>
<th>removeFront</th>
<th>addRear</th>
<th>removeRear</th>
<th>size</th>
</tr>
</thead>
</table>

4. A priority queue has the same operations as a regular queue, except the items are NOT returned in the FIFO (first-in, first-out) order. Instead, each item has a priority that determines the order they are removed. A hospital emergency room operates like a priority queue -- the person with the most serious injury has highest priority even if they just arrived.

a) Suppose that we have a priority queue with integer priorities such that the smallest integer corresponds to the highest priority. For the following priority queue, which item would be dequeued next?

priority queue:

b) To implement a priority queue, we could use an unordered Python list. If we did, what would be the big-oh notation for each of the following methods? (justify your answer)

- enqueue:
- dequeue:

c) To implement a priority queue, we could use a Python list order by priorities in descending order. If we did, what would be the big-oh notation for each of the following methods? (justify your answer)

- enqueue:
- dequeue: