Data Structures (CS 1520) Lecture 7 Name: mﬁ rk F.

1. Section 6.6 discusses a very “non-intuitive”, but powerful list/array-based approach to implement a priority queue,
call a binary heap. The list/array is used to store a completeéfggg, tree (a full tree with any additional leaves as far left
as possible) with the items being arranges by heap-order property, i.e., each node is < either of its childrep. An
example of a min heap “viewed” an a complete binary trefe/\wuld be: {Q’f& (s

0

N
Of

Python List actually used _
ﬁﬁ‘ 6 |15 [10 (114 |20 |20 |50 300 | 125 |117

to store heap items

[

a) For the above heap, the list/array indexes are indicated in [}'s. For a node at index i, what is the index of:
o itsleftchild if it exists: | 32

* itsright child if itexists: ~ ypeq 4 {

¢ its parent if it exists: W;\ / / A

b) What would the above heap look like after inserting 13 and then 37 (show the changes on above tree)

General Idea of insert(newltem): '
* append newltem to the end of the list (easy to do, but violates heap-order property)
* restore the heap-order property by repeatedly swapping the newltem with its parent until it percolates to correct spot

c) What is the big-oh notation for inserting a new item in the heap? L ,
(Zléﬁ 4

d) Complete the code for the percUp method used by insert.

class BinHeap:
def __init__{self}:
self . heaphist = [0]
self,currentSize = 0

def pechﬁ(sglf, cuzren;;%dei) ::]"mﬁgk // Z
parentIndex = U‘_) 4 .
while CUfréA'{ni’fw&@f > , Qf’\ﬁl ‘SC)‘F‘}‘eﬁﬁL"§%[C(/f'ﬂ.f\ﬂ!»j;1£€,§fj _ .
‘fe’r‘ - ﬁf $e h@, h ¢l List Levvapn 41, é‘bgelﬁ I‘MfJL'W’D@é%"“} T‘"@‘*Jj .
SQ ¥ Qc%fgi"f‘g%[’(w?‘?‘e&%jﬁﬂ éf}fj G r s - .
‘ Aoy = selfiheapl s+l pavnt -
S¢ !‘Q‘g k\@é’?ﬁ%—f f%i: lgﬂwém‘f’j:n@e;f:] - ”f”@ﬁ?} (ﬁf ! fp rent mﬂﬁé&f

Co reat Tﬁéﬁg €K = é&gwm%fh Q@ggﬂ

def insert{self,k):
self.heapList.append{k}
self.currentSize = self.currentSize + 1
self . .perclp({self.currentSize)

Lecture 7 - Page 1

Data Structures (CS 1520) Lecture 7 Name:

2. Now let us consider the delMin operation that removes and returns the minimum item.
2 (s VAR ber

Python List actually used %7
to store heap items it

6 |15 (10 1114320 |20 |50 |300 }125 {117

a) What item would de1Min remove and return from the above heap? é
b) What is the quickest way to fill the hole left by delMin? #) o Ve ‘\?),,{ N jTen To o N

¢) What new problem does this cause? g o , £ b0 V“Qg‘#:;v /‘l")ie 1. Y HF

SE
General Idea of delMin () : &' éa iﬁ Wﬁ%ﬁgﬁf)a re f{)g%\‘?l
* remember the minimum value so it can be returned later (easy to find - at index 1)
* copy the last item in the list to the root, delete it from the right end, decrement size
* restore the heap-order property by repeatedly swapping this item with its smallest child until it percolates down to
the correct spot
¢ return the minimum value

d) What would the above heap look like after de1Min? (show the changes on above tree)

¢) Complete the code for the percDown method used by delMin.

class BinHeap: def percBDown{self,currentIndex}: ') .
minTados = self minC Wl cverend 3l

——r

defi?izcgi;disilf’i;if.currentsize: # if only left child ;'F Se"F, }\iﬁ L;Sf"[’(_uf"\éd.f -Ijﬂ?de){j
retgrn i * 2 - -
elsei o o 7SelPh edlaL:'féfﬁexhlﬂjé}sjg’
if self.heapl_.lst{l * 2} < sgelf _heaplistii * 2 + 11}:
Else:return i* 2 ‘rﬁmf)ﬁ‘ sé«"{lp h?ﬁ/’i l'f'f&laf‘f‘eﬁ'il’j;]o&g@
return i * 2 + 1 éﬁl'ﬁﬁeafﬁ;’-{&w‘&m{fﬂgﬁegj
def delMin{self): I g
retval = sglf.heapList[l])) = 56 ‘A!’\QAIQLJ ff&l”lld:rhﬂ@),j
sei?healest_[i] : self.healest_[self.currentslze] .SG,L(: g\e L' \’a['
:Zlf:ggggigzﬁfgip“self.currentSJ.ze 1 e Neanlag m'ﬂrqﬁexijﬁkffﬁ’a
el rercom Correntadey = minTnfey

tlse s
bmak

f) What is the big-oh notation for delMin?

Lecture 7 - Pase 2

Data Structures (CS 1520) Lecture 7 Name:

Once we have a working BinHeap, then implementing the PriorityQueue class using a BinHeap i$ a piece of cake:

File: priority_queue.py
frem binheap import BinHeap

>>»> g = PriorityQueue()
class PriorityQueue: >>> print{q)
def _ init_ {self): [

self._heap = BinHeap{)} >>> q.enqueue (5)

>>> g.enqueue{l)
>>> g.engueue{7)
>>> print(q)

def isEmpty{self):
return self._heap.isEmpty(}

def engueue{self, item): : f1, 5, 7]
self._heap.insert (item) >>> g.deqguene ()
1
def dequeune({self):) >>> print{q)
return self._heap.delMin{) (5, 71

def size(self}:
return selif._heap.size{)

def _ str_ {self):
return str{self._heap)

3. A "list” is a generic term for a sequence of items in a linear arrangement. Unlike stacks, queues and deques access
to list items is not limited to either end, but can be from any position in the list. The general terminology of a list is
illustrated by:

(01 [11 [21 (3] <—— index/position in the list

"Abstract view of a hist” "' 1y g Q!
head tail

There are three broad categories of list operations that are possible:

* index-based operations - the list is manipulated by specifying an index location, e.g.,
myList.insert(3, item) # insert item at index 3 in myList

* content-based operations - the list is manipulated by specifying some content (i.¢., item value), e.g.,
myList.add(item) # adds the item to the list

* cursor-base operations - a cursor (current position) can be moved around the list, and it is used to 1dent1fy list
items to be manipulated, e.g.,

myList.first() # sets the cursor to the head item of the list
myList.next() # moves the cursor one position toward the tail of the list
myList.remove() # deletes the second item in the list because that’s where the cursor is currently located
The following table summarizes the operations from the three basic categories on a list, L:
Index-based operations Content-based operations cursor-based operations
L.insert{index, item) L.add{item) L.hasNext {)
item = Llindex] L.remove {item) L.next ()
Liindex] = newValue L.search{item} #return Boolean L.hasPrevious ()
L.pop{index) i = L.index{item) L.previous ()
L.first {)
L.last{)
L .append{item) L.insert {(item)
L.pop() L.replace{item)
' L.remove {)

Built-in Python lists are unordered with a mixture of index-based and content-based operations. We know they are
implemented using a contiguous block of memory (i.e., an array). The textbook talks about an unordered lst ADT,
and a sorted list ADT which is more content-based. Both are implemented using a singly-linked llst

a) Why would a singly-linked list be a ba Zchmce for implementing a cursor-based list j S" DU/ (O(A)).}.0
pev Foram pwevbgs mo,%a Be‘Her o ¢se cﬁou y«/m é :5”7‘*'

Lecture 7 - Page 3

