
Data Structures - Test 2

Question 1.  Write a recursive Python function to calculate  (where n is an integer) based on the formulas:a
n

, for n = 0a
0 = 1

, for n = 1a
1 = a

, for even n > 1a
n = a

n/2
a

n/2

, for odd n > 1a
n = a

(n−1)/2
a

(n−1)/2
a

a)  (12 points)  Complete the below powerOf recursive function

def powerOf(a, n):

b)  (8 points) For the above recursive powerOf function, complete the calling-tree for powerOf (2, 6).

powerOf(2,6)

powerOf(2,3) powerOf(2,3)

c)  (5 points)  Suggest a way to speedup the above powerOf function.

Spring 2013                                                                                                           Name: ______________________

1



Question 2.  (10 points.)  Consider the following insertion sort code which sorts in ascending order.

def insertionSort(myList):

    """Rearranges the items in myList so they are in ascending order"""

    for firstUnsortedIndex in range(1,len(myList)):

        itemToInsert = myList[firstUnsortedIndex]

        testIndex = firstUnsortedIndex - 1

        while testIndex >= 0 and myList[testIndex] > itemToInsert:

            myList[testIndex+1] = myList[testIndex]

            testIndex = testIndex - 1

        # Insert the itemToInsert at the correct spot

        myList[testIndex + 1] = itemToInsert

a)  What initial arrangement of items causes the overall worst-case performance of insertion sort?

b)  What is the worst-case Ο ( ) notation for insertion sort?

c)  What initial arrangement of items causes the overall best-case performance of insertion sort?

d) What is the best-case Ο ( ) notation for insertion sort?

Question 3.  (25 points)  Write a variation of selection sort that:

� sorts in descending order (largest to smallest)

� builds the sorted part on the left-hand side of the list by having each pass of the outer loop do the following:

Sorted Part Unsorted Part

1) Inner loop:  that scans the unsorted part to find 
     the index of the largest item in the unsorted part
2) Swap the first item in the unsorted part with
     the largest item in the unsorted part that was found in (1)

def selectionSort(myList):

Spring 2013                                                                                                           Name: ______________________

2



Question 4.  (20 points)  Recall the common rehashing strategies we discussed for open-address hashing:

Check the square of the attempt-number away for an available slot, i.e., 

[home address + ( (rehash attempt #)2 +(rehash attempt #) )/2] % (hash table size), where the hash table size

is a power of 2.   Integer division is used above

quadratic

probing

Check next spot (counting circularly) for the first available slot, i.e., 

(home address + (rehash attempt #)) % (hash table size)

linear

probing

DescriptionStrategy

a)  Insert “Paul Gray” and then “Kevin O’Kane” using Linear (on left) and Quadratic (on right) probing. 

John DoeJohn Doe

hash(John Doe) = 6

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup

hash(Mark Fienup) = 5

Ben SchaferBen Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 5

hash(Kevin O'Kane) = 6

Hash functionHash Table with Linear Probing Hash Table with Quad. Probing

00

11

22

33

44

55

66

77

b)  Explain why the average/expected search time for hashing is O(1).

Question 5.  (20 points)  Heap sort uses a min-heap to sort a list. (BinHeap methods: BinHeap(), insert(item),

delMin(), isEmpty(), size())

1. Create an empty heap

Generl idea of Heap sort:

2. Insert all n list items into heap

3. delMin heap items back to list in sorted order

myList                           sorted list with n items

myList                          unsorted list with n items

heap with

n items

a)  What is the overall O( ) for heap sort?

b)  Explain your O( ) answer for part (a).

Spring 2013                                                                                                           Name: ______________________

3


