class BinarySearchTree:
 ...
 def delete(self, key):
 if self.size > 0:
 nodeToRemove = self._get(key, self.root)
 if nodeToRemove:
 self.remove(nodeToRemove)
 self.size -= 1
 else:
 raise KeyError('Error, key not in tree')
 elif self.size == 1 and self.root.key == key:
 self.root = None
 self.size -= 1
 else:
 raise KeyError('Error, key not in tree')

 def __delitem__(self, key):
 self.delete(key)

 def remove(self, current_node):
 if current_node.isLeaf(): # leaf
 if current_node == current_node.parent.leftChild:
 current_node.parent.leftChild = None
 else:
 current_node.parent.rightChild = None
 elif current_node.hasBothChildren(): # interior
 succ = current_node.findSuccessor()
 succ.spliceOut()
 current_node.key = succ.key
 current_node.payload = succ.payload
 else: # this node has one child
 if current_node.hasLeftChild():
 if current_node.isLeftChild():
 currentNode.leftChild.parent = currentNode.parent
 currentNode.parent.leftChild = currentNode.leftChild
 else:
 currentNode.leftChild.parent = currentNode.parent
 currentNode.parent.rightChild = currentNode.leftChild
 elif currentNode.isRightChild():
 currentNode.rightChild.parent = currentNode.parent
 currentNode.parent.rightChild = currentNode.rightChild
 else:
 else:
 if currentNode.isLeftChild():
 currentNode.rightChild.parent = currentNode.parent
 currentNode.parent.leftChild = currentNode.rightChild
 elif currentNode.isRightChild():
 currentNode.rightChild.parent = currentNode.parent
 currentNode.parent.rightChild = currentNode.rightChild
 else:

a) Update picture where we delete a leaf.

b) Where in the code is each handled?

c) Draw all pictures deleting all nodes with one child.
3. Yet even more partial `TreeNode` class and partial `BinarySearchTree` class.

```python
class TreeNode:
    ...
    def findSuccessor(self):
        succ = None
        if self.hasRightChild():
            succ = self.rightChild.findMin()
        else:
            if self.parent:
                if self.isLeftChild():
                    succ = self.parent
                else:
                    self.parent.rightChild = None
                    succ = self.parent.findSuccessor()
                    self.parent.rightChild = self
        return succ
    def findMin(self):
        current = self
        while current.hasLeftChild():
            current = current.leftChild
        return current
    def spliceOut(self):
        if self.isLeaf():
            if self.isLeftChild():
                self.parent.leftChild = None
            else:
                self.parent.rightChild = None
        elif self.hasAnyChildren():
            if self.hasLeftChild():
                if self.isLeftChild():
                    self.parent.leftChild = self.leftChild
                else:
                    self.parent.rightChild = self.leftChild
                    self.leftChild.parent = self.parent
            else:
                if self.isLeftChild():
                    self.parent.leftChild = self.rightChild
                else:
                    self.parent.rightChild = self.rightChild
                    self.rightChild.parent = self.parent
```
6. The shape of a BST depends on the order in which values are added (and deleted).
 a) What would be the shape of a BST if we start with an empty BST and insert the sequence of values:

 70, 90, 80, 5, 30, 110, 95, 40, 100

 b) If a BST contains n nodes and we start searching at the root, what would be the worst-case big-oh $O(\cdot)$ notation for a successful search? (Draw the shape of the BST leading to the worst-case search)

7. We could store a BST in an array like we did for a binary heap, e.g. root at index 1, node at index i having left child at index $2 \times i$, and right child at index $2 \times i + 1$.
 a) Draw the above BST (after inserting: 70, 90, 80, 5, 30, 110, 95, 40, 100) stored in an array (leave blank unused slots)

 b) What would be the worst-case storage needed for a BST with n nodes?

8. a) If a BST contains n nodes, draw the shape of the BST leading to best, successful search in the worst case.

 b) What is the worst-case big-oh $O(\cdot)$ notation for a successful search in this “best” shape BST?
1. Consider the Binary Search Tree (BST):

 ![BST Diagram]

 a. What would need to be done to delete 32 from the BST?
 b. What would need to be done to delete 9 from the BST?
 c. What would be the result of deleting 50 from the BST?
 d. Which node would the TreeNode's findSuccessor method return for succ if we are deleting 50 from the BST?

2. When the findSuccessor method is called how many children does the self node have?

3. How could we improve the findSuccessor method?
 - Eliminate "dead code" code that can never run. (see page 4 of lecture 19)

4. When the spliceOut method is called from remove how many children could the self node have?
 At most a rightChild since its the smallest node in a subtree.

5. How could we improve the spliceOut method?
 - Eliminate dead code (see page 4 of lecture 4)
1. An AVL Tree is a special type of Binary Search Tree (BST) that it is height balanced. By height balanced I mean that the height of every node’s left and right subtrees differ by at most one. This is enough to guarantee that a AVL tree with n nodes has a height no worse than $O(1.44 \log_2 n)$. Therefore, insertions, deletions, and search are worst case $O(\log_2 n)$. An example of an AVL tree with integer keys is shown below. The height of each node is shown.

Each AVL-tree node usually stores a balance factor in addition to its key and payload. The balance factor keeps track of the relative height difference between its left and right subtrees, i.e., $\text{height(left subtree)} - \text{height(right subtree)}$.

a) Label each node in the above AVL tree with one of the following balance factors:
 - 0 if its left and right subtrees are the same height
 - 1 if its left subtree is one taller than its right subtree
 - -1 if its right subtree is one taller than its left subtree

b) We start a put operation by adding the new item into the AVL as a leaf just like we did for Binary Search Trees (BSTs). Add the key 90 to the above tree.

c) Identify the node “closest up the tree” from the inserted node (90) that no longer satisfies the height-balanced property of an AVL tree. This node is called the pivot node. Label the pivot node above.

d) Consider the subtree whose root is the pivot node. How could we rearrange this subtree to restore the AVL height balanced property? (Draw the rearranged tree below)