1. Consider the Binary Search Tree (BST):

```
  50
 /   \
30    60
 / \\  /  \
9  34 58  80
 /   / \
32 47 53  55
      / \
     18  \
```

a. What would need to be done to delete 32 from the BST?

b. What would need to be done to delete 9 from the BST?

c. What would be the result of deleting 50 from the BST? Hint: One technique when programming is to convert a hard problem into a simpler problem. Deleting a BST node that contains two children is a hard problem. Since we know how to delete a BST node with none or one child, we can convert “deleting a node with two children” problem into a simpler problem by overwriting 50 with another node’s value. Which nodes can be used to overwrite 50 and still maintain the BST ordering?

d. Which node would the TreeNode’s findSuccessor method return for succ if we are deleting 50 from the BST?

2. When the findSuccessor method is called how many children does the self node have?

3. How could we improve the findSuccessor method?

4. When the spliceOut method is called from remove how many children could the self node have?

5. How could we improve the spliceOut method?
6. The shape of a BST depends on the order in which values are added (and deleted).
 a) What would be the shape of a BST if we start with an empty BST and insert the sequence of values:
 70, 90, 80, 5, 30, 110, 95, 40, 100

b) If a BST contains n nodes and we start searching at the root, what would be the worst-case big-oh \(O() \) notation for a successful search? (Draw the shape of the BST leading to the worst-case search)

7. We could store a BST in an array like we did for a binary heap, e.g. root at index 1, node at index i having left child at index 2 * i, and right child at index 2 * i + 1.
 a) Draw the above BST (after inserting: 70, 90, 80, 5, 30, 110, 95, 40, 100) stored in an array (leave blank unused slots)

 b) What would be the worst-case storage needed for a BST with n nodes?

8. a) If a BST contains n nodes, draw the shape of the BST leading to best, successful search in the worst case.

 b) What is the worst-case big-oh \(O() \) notation for a successful search in this “best” shape BST?