1. **Traveling Salesperson Problem (TSP)** -- Find an optimal (i.e., minimum length) tour when at least one tour exists. A tour (or Hamiltonian circuit) is a path from a vertex back to itself that passes through each of the other vertices exactly once. (Since a tour visits every vertex, it does not matter where you start, so we will generally start at \(\nu_0 \).)

What are the length of the following tours?

a) \([\nu_0, \nu_2, \nu_3, \nu_5, \nu_4, \nu_2, \nu_0]\) \(= \sum \text{lengths}\)

b) List another tour starting at \(\nu_0 \) and its length.

\[\nu_0, \nu_2, \nu_3, \nu_4, \nu_1, \nu_0\]

\[\sum = 26\]

c) For a graph with "n" vertices \((\nu_0, \nu_1, \nu_2, \ldots, \nu_{n-1})\), one possible approach to solving TSP would be to brute-force generate all possible tours to find the minimum length tour. "Complete" the following decision tree to determine the number of possible tours.

\[\begin{align*}
(\nu_0, \nu_1, \nu_2) & \rightarrow \\
(\nu_0, \nu_1, \nu_3) & \rightarrow \\
(\nu_0, \nu_1, \nu_{n-1}) & \rightarrow \\
\vdots & \vdots \\
(\nu_{n-1}, \nu_0) & \rightarrow \\
(\nu_{n-1}, \nu_1, \nu_2) & \rightarrow \\
(\nu_{n-1}, \nu_1, \nu_3) & \rightarrow \\
(\nu_{n-1}, \nu_1, \nu_{n-1}) & \rightarrow \\
\ddots & \\
(\nu_3, \nu_0) & \\
(\nu_3, \nu_1, \nu_2) & \rightarrow \\
(\nu_3, \nu_1, \nu_3) & \rightarrow \\
(\nu_3, \nu_1, \nu_{n-1}) & \rightarrow \\
\vdots & \vdots \\
(\nu_{n-1}, \nu_0) & \rightarrow \\
\end{align*}\]

\[\begin{align*}
(\nu_{n-1}) & \rightarrow \\
(\nu_{n-1})(\nu_{n-2}) & \rightarrow \\
(\nu_{n-1})(\nu_{n-2})(\nu_{n-3}) & \rightarrow \\
\ddots & \vdots \\
(\nu_3)(\nu_2) & \rightarrow \\
(\nu_3)(\nu_2)(\nu_1) & \rightarrow \\
(\nu_3)(\nu_2)(\nu_3) & \rightarrow \\
(\nu_3)(\nu_2)(\nu_{n-1}) & \rightarrow \\
\ddots & \\
(\nu_{n-1})(\nu_0) & \\
\end{align*}\]

\[\begin{align*}
(n-1) & \rightarrow \\
(n-1)(n-2) & \rightarrow \\
(n-1)(n-2)(n-3) & \rightarrow \\
\ddots & \vdots \\
(2) & \rightarrow \\
\end{align*}\]

Unfortunately, TSP is an "NP-hard" problem, i.e., no known polynomial-time algorithm.
2. Handling "Hard" Problems: For many optimization problems (e.g., TSP, knapsack, job-scheduling), the best
known algorithms have run-time's that grow exponentially ($O(2^n)$ or worse). Thus, you could wait centuries for
the solution of all but the smallest problems!

Ways to handle these "hard" problems:

- Find the best (or a good) solution "quickly" to avoid considering the vast majority of the 2^n worse
 solutions, e.g., Backtracking (section 4.6) and Best-first-search-branch-and-bound
- See if a restricted version of the problem meets your needed that might have a tractable (polynomial, e.g.,
 $O(n^3)$) solution. e.g., TSP problem satisfying the triangle inequality, Fractional Knapsack problem
- Use an approximation algorithm to find a good, but not necessarily optimal solution

Backtracking general idea: (Recall the coin-change problem from lectures 10 and 13)

- Search the "state-space tree" using depth-first search to find a suboptimal solution quickly
- Use the best solution found so far to prune partial solutions that are not "promising," i.e., cannot lead to a
 better solution than one already found.

The goal is to prune enough of the state-space tree (exponential is size) that the optimal solution can be found in a
reasonable amount of time. However, in the worst case, the algorithm is still exponential.

My simple backtracking solution for the coin-change problem without pruning:

```python
def recMC(change, coinValueList):
    global backtrackingNodes
    backtrackingNodes += 1
    minCoins = change
    if change in coinValueList:
        return 1
    else:
        for i in coinValueList:
            if i <= change:
                numCoins = 1 + recMC(change - i, coinValueList)
                if numCoins < minCoins:
                    minCoins = numCoins
        return minCoins
```

Results of running this code:

<table>
<thead>
<tr>
<th>Change Amount: 63 Coin types: [1, 5, 10, 25]</th>
<th>Run-time: 0.036 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fewest number of coins 6</td>
<td></td>
</tr>
<tr>
<td>The number of each type of coins is:</td>
<td></td>
</tr>
<tr>
<td>number of 1-cent coins is 3</td>
<td></td>
</tr>
<tr>
<td>number of 5-cent coins is 0</td>
<td></td>
</tr>
<tr>
<td>number of 10-cent coins is 1</td>
<td></td>
</tr>
<tr>
<td>number of 25-cent coins is 2</td>
<td></td>
</tr>
<tr>
<td>Number of Backtracking Nodes: 4031</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change Amount: 63 Coin types: [25, 10, 5, 1]</th>
<th>Run-time: 0.003 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fewest number of coins 6</td>
<td></td>
</tr>
<tr>
<td>The number of each type of coins is:</td>
<td></td>
</tr>
<tr>
<td>number of 25-cent coins is 2</td>
<td></td>
</tr>
<tr>
<td>number of 10-cent coins is 1</td>
<td></td>
</tr>
<tr>
<td>number of 5-cent coins is 0</td>
<td></td>
</tr>
<tr>
<td>number of 1-cent coins is 3</td>
<td></td>
</tr>
<tr>
<td>Number of Backtracking Nodes: 310</td>
<td></td>
</tr>
</tbody>
</table>

Consider the output of running the backtracking code with pruning twice with a change amount of 63 cents.

<table>
<thead>
<tr>
<th>Change Amount: 63 Coin types: [1, 5, 10, 25]</th>
<th>Run-time: 0.036 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fewest number of coins 5</td>
<td></td>
</tr>
<tr>
<td>The number of each type of coins is:</td>
<td></td>
</tr>
<tr>
<td>number of 1-cent coins is 3</td>
<td></td>
</tr>
<tr>
<td>number of 5-cent coins is 0</td>
<td></td>
</tr>
<tr>
<td>number of 10-cent coins is 1</td>
<td></td>
</tr>
<tr>
<td>number of 25-cent coins is 2</td>
<td></td>
</tr>
<tr>
<td>Number of Backtracking Nodes: 4031</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change Amount: 63 Coin types: [25, 10, 5, 1]</th>
<th>Run-time: 0.003 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fewest number of coins 6</td>
<td></td>
</tr>
<tr>
<td>The number of each type of coins is:</td>
<td></td>
</tr>
<tr>
<td>number of 25-cent coins is 2</td>
<td></td>
</tr>
<tr>
<td>number of 10-cent coins is 1</td>
<td></td>
</tr>
<tr>
<td>number of 5-cent coins is 0</td>
<td></td>
</tr>
<tr>
<td>number of 1-cent coins is 3</td>
<td></td>
</tr>
<tr>
<td>Number of Backtracking Nodes: 310</td>
<td></td>
</tr>
</tbody>
</table>

a) With the coin types sorted in ascending order what is the first solution found? 63 pennies

b) How useful is the solution found in (a) for pruning? Very useful

c) With the coin types sorted in descending order what is the first solution found? 2 x 25¢ 10¢ 3 x 1¢

d) How useful is the solution found in (c) for pruning? Very useful
e) For the coin-change problem, backtracking is not the best problem-solving technique. What technique was better?

\textit{Dynamic programming is a better technique.}

3. a) For the TSP problem, why is backtracking the best problem-solving technique?

b) To prune a node in the search-tree, we need to be certain that it cannot lead to the best solution. How can we calculate a "bound" on the best solution possible from a node (e.g., say node with partial tour: \([v_0, v_4, v_1]\))?

The partial tour is fixed: \(v_0, v_4, v_1\), and we know its length is 7. We need to leave \(v_1\) going some place "reasonable" (i.e., any vertex not on partial tour already). The best we can do is the minimum edge leaving \(v_1\) to one of these vertices \((v_1 \rightarrow v_2, v_1 \rightarrow v_3)\), so pick 2. We also need to leave every vertex not on the partial path: \(v_2\) and \(v_3\) when completing the tour. The best we can do is the minimum edge leaving each of these vertices going some place reasonable.
Each vertex could go to any vertex not already on the partial tour or back to V_0 to complete the tour.

For V_2, we pick the minimum of

$$N_2 \xrightarrow{7} N_3 \text{ or } N_2 \xrightarrow{8} N_0,$$

which is 8.

For V_3, we pick the minimum of

$$N_3 \xrightarrow{7} N_2 \text{ or } N_3 \xrightarrow{\infty} N_0,$$

which is 7.

Therefore, a bound on the partial tour $[V_0, V_4, V_1]$ is $7 + 2 + 8 + 7 = 24$.
2. To prune a node in the search-tree, we need to be certain that it cannot lead to the best solution. We can calculate a "bound" on the best solution possible from a node (e.g., say node with partial tour: \([v_0, v_4, v_1]\)) by summing the partial tour with the minimum edges leaving the remaining nodes going some place reasonable. Complete the backtracking state-space tree with pruning.
Data Structures (CS 1520)

Lecture 28

3. An alternative to backtracking, is the Best-First search with Branch-and-Bound approach:
 - It does not limit us to any particular search pattern in the state-space tree like backtracking's left-most branch to right-most branch
 - It calculates a "bound" estimate for each node that indicates the "best" possible solution that could be obtained from any node in the subtree rooted at that node, i.e., how "promising" following that node might be
 - It expands the most promising ("best") node first by visiting its children

a) What type of data structure would we use to find the most promising node to expand next? **min/heap/priority queue with bound as the priority.**

b) Complete the best-first search with branch-and-bound state-space tree with pruning. Indicate the order of nodes expanded.