A Deque (pronounced "Deck") is a linear data structure which behaves like a double-ended queue, i.e., it allows adding or removing items from either the front or the rear of the Deque.

1. One possible implementation of a Deque would be to use a Python list to store the Deque items such that
 - the rear item is always stored at index 0,
 - the front item is always stored at the highest index (or -1)

 a) Complete the __init__ method and determine the big-oh, \(O() \), for each Deque operation, assuming the above implementation. Let \(n \) be the number of items in the Deque.

<table>
<thead>
<tr>
<th>isEmpty</th>
<th>addFront</th>
<th>removeFront</th>
<th>addRear</th>
<th>removeRear</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

 b) Write the methods for the addRear and removeRear operation.

   ```python
   def addRear(self, newItem):
       self.items.insert(0, newItem)
   def removeRear(self):
       return self.items.pop(0)
   ```

2. An alternative implementation of a Deque would be a linked implementation as in:

 a) Complete the __init__ method and determine the big-oh, \(O() \), for each Deque operation assuming the above linked implementation. Let \(n \) be the number of items in the Deque.

<table>
<thead>
<tr>
<th>isEmpty</th>
<th>addFront</th>
<th>removeFront</th>
<th>addRear</th>
<th>removeRear</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

 b) Suggest an improvement to the above linked implementation of the Deque to speed up some of its operations.
3. An alternative implementation of a Deque would be a doubly-linked implementation as in:

DoublyLinkedDeque Object

a) Determine the big-oh, \(O() \), for each Deque operation assuming the above doubly-linked implementation. Let \(n \) be the number of items in the Deque.

<table>
<thead>
<tr>
<th>isEmpty</th>
<th>addFront</th>
<th>removeFront</th>
<th>addRear</th>
<th>removeRear</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
</tr>
</tbody>
</table>

4. A priority queue has the same operations as a regular queue, except the items are NOT returned in the FIFO (first-in, first-out) order. Instead, each item has a priority that determines the order they are removed. A hospital emergency room operates like a priority queue -- the person with the most serious injury has highest priority even if they just arrived.

a) Suppose that we have a priority queue with integer priorities such that the smallest integer corresponds to the highest priority. For the following priority queue, which item would be dequeued next?

[Diagram of priority queue]

b) To implement a priority queue, we could use an unordered Python list. If we did, what would be the big-oh notation for each of the following methods: (justify your answer)

- enqueue: \(O(1) \)
- dequeue: \(O(n) \)

c) To implement a priority queue, we could use a Python list order by priorities in descending order. If we did, what would be the big-oh notation for each of the following methods: (justify your answer)

- enqueue: \(O(n) \)
- dequeue: \(O(1) \)
Deque DoublyLinkedList

if self._size == 0:
 raise ValueError("Cannot remove from empty Deque.")

1. temp = self._front

2. self._front = self._front.getPrevious()
 if self._size == 1: self._rear = None
 else: self._front = self._front.getPrevious()

3. self._size -= 1

4. return temp.getData()

Special cases:

a. empty - raise ValueError
b. removing only item
 c. If temp is the only item
 d. self._rear = None

Special cases:

0. problem

3c. self._rear = None
1. Section 6.6 discusses a very "non-intuitive", but powerful list/array-based approach to implement a priority queue, call a binary heap. The list/array is used to store a complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranged by heap-order property, i.e., each node is ≤ either of its children. An example of a min heap "viewed" an a complete binary tree would be:

Python List actually used to store heap items

```
[6, 15, 10, 114, 20, 20, 50, 300, 125, 117, 13, 3]
```

a) For the above heap, the list/array indexes are indicated in []'s. For a node at index i, what is the index of:
- its left child if it exists: \[2i\]
- its right child if it exists: \[2i + 1\]
- its parent if it exists: \[i / 2\]

b) What would the above heap look like after inserting 13 and then 37 (show the changes on above tree)

General Idea of insert(newItem):
- append newItem to the end of the list (easy to do, but violates heap-order property)
- restore the heap-order property by repeatedly swapping the newItem with its parent until it percolates to correct spot

c) What is the big-oh notation for inserting a new item in the heap?

d) Complete the code for the percUp method used by insert.

```python
class BinHeap:
    def __init__(self):
        self.heapList = [0]
        self.currentSize = 0

    def percUp(self, currentIdx):
        parentIdx =
        while

    def insert(self, k):
        self.heapList.append(k)
        self.currentSize = self.currentSize + 1
        self.percUp(self.currentSize)
```