Question 1. (5 points) Consider the following Python code.

```python
for i in range(n):
    j = 1
    while j < n:
        for k in range(n):
            print (i, j, k)
        j = j * 2
```

What is the big-oh notation \(O(\) \) for this code segment in terms of \(n \)?

Question 2. (5 points) Consider the following Python code.

```python
i = 2**n  # this is \( 2^n \)
while i > 1:
    for j in range(n):
        print(j)
    i = i // 2
```

What is the big-oh notation \(O(\) \) for this code segment in terms of \(n \)?

Question 3. (5 points) Consider the following Python code.

```python
def main(n):
    for i in range(n):
        doSomething(n)

def doSomething(n):
    for k in range(n):
        print(k)
main(n)
```

What is the big-oh notation \(O(\) \) for this code segment in terms of \(n \)?

Question 4. (10 points) Suppose an \(O(n^4) \) algorithm takes 10 seconds when \(n = 1,000 \). How long would you expect the algorithm to run when \(n = 10,000 \)?

Question 5. (10 points) Why should you design a program instead of “jumping in” by start writing code?
Question 6. Consider the following Stack implementation utilizing a Python list:

a) (6 points) Complete the big-oh notation for the Stack methods assuming the above implementation: ("n" is the # items)

<table>
<thead>
<tr>
<th>Method</th>
<th>Big-oh</th>
</tr>
</thead>
<tbody>
<tr>
<td>push(item)</td>
<td></td>
</tr>
<tr>
<td>pop()</td>
<td></td>
</tr>
<tr>
<td>peek()</td>
<td></td>
</tr>
<tr>
<td>size()</td>
<td></td>
</tr>
<tr>
<td>isEmpty()</td>
<td></td>
</tr>
<tr>
<td>init</td>
<td></td>
</tr>
</tbody>
</table>

b) (9 points) Complete the code for the pop method including the precondition check.

```python
class Stack:
    def __init__(self):
        self._items = []

    def pop(self):
        """Removes and returns the top item of the stack
        Precondition: the stack is not empty.
        Postcondition: the top item is removed from the stack and returned""
```

c) (5 points) Suggest an alternate Stack implementation to speed up some of its operations.
Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranged by heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete binary tree would be:

```
  10
 /   \
25   15
 / \
90 30
/  \
|   |
120 115
```

Python List actually used to store heap items

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>not used</td>
<td>10</td>
<td>25</td>
<td>15</td>
<td>90</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>120</td>
<td>115</td>
<td>37</td>
<td>115</td>
</tr>
</tbody>
</table>

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:
• its left child if it exists:
• its right child if it exists:
• its parent if it exists:
b) (6 points) What would the above heap look like after inserting 35 and then 12 (show the changes on above tree)
c) (2 points) What is the big-oh notation for inserting a new item in the heap?

Now consider the delMin operation that removes and returns the minimum item.

```
  10
 /   \
25   15
 / \
90 30
/  \
|   |
120 115
```

Python List actually used to store heap items

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>not used</td>
<td>10</td>
<td>25</td>
<td>15</td>
<td>90</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>120</td>
<td>115</td>
<td>37</td>
<td>115</td>
</tr>
</tbody>
</table>

d) (1 point) What item would delMin remove and return from the above heap?
e) (6 points) What would the above heap look like after delMin? (show the changes on above tree)
f) (2 points) What is the big-oh notation for delMin?
Question 8. The textbook’s ordered list ADT uses a singly-linked list implementation. I added the _size and _tail attributes:

![OrderedList Object Diagram]

a) (15 points) The \(\text{pop(position)} \) method removes and returns the item at the specified position. The precondition is that position is a nonnegative integer corresponding to an actual list item (e.g., for the above list \(0 \leq \text{position} \leq 3 \)). Complete the \(\text{pop(position)} \) method code including the precondition check.

```python
class OrderedList:
    def __init__(self):
        self._head = None
        self._size = 0
        self._tail = None
    def pop(self, position):
```

b) (10 points) Assuming the ordered list ADT described above. Complete the big-oh \(O(\cdot) \) for each operation. Let \(n \) be the number of items in the list.

<table>
<thead>
<tr>
<th>Operation</th>
<th>(O(\cdot))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pop(position)})</td>
<td>Removes and returns the item at the specified position</td>
</tr>
<tr>
<td>(\text{pop()})</td>
<td>Removes and returns tail item</td>
</tr>
<tr>
<td>(\text{length()})</td>
<td>Returns number of items in the list</td>
</tr>
<tr>
<td>(\text{index(item)})</td>
<td>Returns the position of item in the list</td>
</tr>
<tr>
<td>(\text{add(item)})</td>
<td>Adds item to its sorted spot in the list</td>
</tr>
</tbody>
</table>