Spring 2014 Name: ﬂ/}@ /‘k ﬁ/
Data Structures - Test 1

Question 1. (4 points) Consider the following Python code.
for i in range(n*n}: af‘/ll

j =1
{z’{ L:jmile j < n: e (071’,,,\ O (m'&_ ZO?L’}4>

print (i, 3J)
=4 % 2

What is the big-oh notation O) for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

i=1
while i < n: f“chﬁ /\
ﬁf for j in range{n):

print () 0 (/l?;) CJ/} P)

for kx in range{n):
print{k}

i=41*2

What is the big-oh notation O () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):
for i in range{n}:
doSomething{n}

def doSomethingi{n}: P
f for k in range(n):. . f\
’ doMore (n)
def doMore (n):
for k in range{n):
print (k)
main (n)

What is the big-oh notation O () for this code segment in terms of n?

Question 4, (8 points) Suppose a O (n’) algorithm takes 10 seconds when n = 100. How long would you expect
the algorithm to run when n= 1,000? S
T(l&?d)c)):: C 000

T(n):‘ - Mg - - L5
% T(l&o) = C IOOS;; ,(ngc_ - IO éfec }O
IO S - ‘*ﬁ - 10 §€(_
C= 1505 CTI0 se

Question 5. (5 points) Why should you design a program instead of “jumping in” and start by writing code?

5 }/"*/ W!PH ﬂ’?@/‘ff_ \Oéim/e,w Mig%ﬁ."% WW“/C’\)”? ‘“pmmn 4 aaéff}’,ﬁ'

Spring 2014 Name:
Question 6. A Deque (pronounced “Deck™) is a linear data structure which behaves like a double-ended queue, i.e.,
it allows adding or removing items from either the front or the rear of the Deque. One possible implementation of
a Deque would be to use a built-in Python list to store the Deque items such that

* the rear item is always stored at index 0,

* the front item is always at index len(self._items)-1 or -1

Deque Object Python List Object

0 1 2 3
e Ial Ib! ICI !dl
rear fromnt

a) (6 points) Complete the big-oh O (), for each Deque operation, assuming the above implementation. Let n be
the number of items in the Deque.

isEmpty addRear removeRear addFront removeFront size
7 o) o(n) oln) o) o (1) o(r)

b) (9 points) Complete the method for the removeRear operation including the precondition check.

def removeRear(self}:
"rhRpemoves and returns the rear item of the Deqgue
Precondition: the Degue is not empty.
Postcondition: Rear item is removed from the Pegue and returned"""

it len(seld_ items) oz 0
Ef\d !‘SQ Vﬁ,{/ﬁt& EV/’“&W‘ (“ Cann 9'71 reMpie ’P’E)rﬁ 6/*!/9"1‘}/ w??e)
53 veteon colf_ iw‘-ém;,}goﬁ (@)

¢) (5 points) Suggest an alternate Deque implementation to speed up some of its operations.

A cﬂovla,\/w lia L(Zﬁ I (‘3";‘ l‘/h/y/e 9] c,»,;/wﬂéﬂl
S

MW

Name:

Spring 2014
Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full free with any additional leaves as far left as possible) with the items being arranges by
heap-order property, i.e., each node is < either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

[1]

0 1 2 3 4 5 6 7 8 9 10 11

Python List actually used
10 store heap items f% 7 {18 |13 |45 |23 |30 |50 |200|51 |77 | 61

a} (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index 7, what is the index of!
* itsleftchild if itexists: 2 3¢ 2,

* itsright child if it exists:) ¥ 4

* its parent if it exists: /C 5.

b) (7 points) What would the ééve heap look like after inserting 12 and then 25 (show the changes on above tree)

c¢) (3 points) What is the big-oh notation for inserting a new item in the heap? 0 C[‘97 ~)
2,

Now consider the de1Min operation that removes an%e

0 1 2 3 4 5 6 7 8 9 10 11

Python List actually used
to store heap items gg 7 118 (13 (45 |23 |30 |50 |200 51 |77 | 61

d) (2 point) What item would de 1Min remove and return from the above heap? w)
e) (7 points) What would the above heap look like after de1Min? (show the changes on above tree)

f) (3 points) What is the big-oh notation for de1Min? (o (l 0 ? 2 f/})

e

Spring 2014 Name:

Question 8. The textbook’s Ordered list ADT uses a singly-linked list implementation. I added the size and
tail attributes: -

_taz E‘S’:Lj""’]

OrderedList Object data next data next data next data next

Id! I Ih! L. ‘ln‘ tt!

a) (15 points) The add(item) method adds the add to the list. Recall that the textbook’s implementation, cannot
contain duplicate items!!! Thus, the precondition is that item is a not already in the list. Complete the add (item)
method code including the precondition check.

class OrderedList {object): class Node:
def _ init_ (self, initdata}:

def _init (self): Self ment - Noms
self. head = HNone
self, size 0

self. tail = None

def getData({self}:
refturn selif.data

([

def getNext({self}:

def add{self, item): , V & \ return self.next
MP z?p& 3 th{ﬁ' def setbhata(self, newdata):
va = Nc?ﬂ@, self.data = newdata

7 def setNext(self, newnext}:
C uV‘f‘ef\vf’ S(? 'F L‘Q@‘{j self.next = newnext

WL\ {6’ CUV‘V‘@ﬂ"f“’ = /Vow@_)
"} cvrrent, e“f“Désﬁ(’)wanem.‘

Maise Vfi[#w, f”v*‘fw‘(Canngt- a;@ ﬂaﬁlfgﬂﬁ f‘)
i Corteqdf, g&'f‘b&h(}} +“er$’l‘ S— B S e
i CVVV‘M“I‘ =2 Wypne s

bwo.ﬁ k l
selP, gyl = tewmpe
SQ,HE, wSige +2= |

‘QNV = é,'f"mféft'{‘:“

CUV‘/"M‘{" = CUV‘f‘e,ﬂ! 7@%”@%"%{)

y @» = o
b ﬁ»ii" A;?e%i’ww‘ fﬁif«w heot)
= e

¢ .S@ ’:ﬁf) Qé%ﬁ/a‘x‘i”(C,uk"i/’e,/i ‘i“)

1

b) (10 points) Assuming the ordered list ADT described above does not allows duplicate items. Complete the
big-oh O () for each operation. Let n be the number of items in the list.

add (item} pop () length(} remove {item) index {item}
removes and returns returns number of removes the item returns the position of
tail itemn items in the list from the list item in the list

a(n) ONRN o(n) | ol

\:/

