Question 1. (10 points) What is printed by the following program?

```python
def recFn(myStr, index):
    if index >= len(myStr):
        return "WOW"
    else:
        myStr[0] + recFn(myStr, index + 3) + myStr[index]
    print("result =", recFn("abcdefghijklmnopqrstuvwxyz", 3))
```

Output:
```
result = qaqWOWjgd
```

Question 2. a) (12 points) Write a recursive Python function to compute the following mathematical function, G(n):

\[G(n) = n \text{ for all values of } n \leq 2 \text{ (e.g., } G(1) \text{ value is 1) } \]
\[G(n) = G(n-3) + G(n-1) \text{ for all values of } n > 2. \]

```python
def G(n):
    if n <= 2:
        return n
    else:
        return G(n-3) + G(n-1)
```

b) (8 points) For the above recursive function G(n), complete the calling-tree for G(6).

c) (3 points) What is the value of G(6)?

d) (2 points) What is the maximum height of the run-time stack when calculating G(6) recursively?
Question 3. (15 points) Consider the following simple sorts discussed in class -- all of which sort in ascending order.

```python
def bubbleSort(myList):
    for lastUnsortedIndex in range(len(myList)-1, 0, -1):
        alreadySorted = True
        for testIndex in range(lastUnsortedIndex):
            if myList[testIndex] > myList[testIndex+1]:
                temp = myList[testIndex]
                myList[testIndex] = myList[testIndex+1]
                myList[testIndex+1] = temp
                alreadySorted = False
        if alreadySorted:
            return

def insertionSort(myList):
    for firstUnsortedIndex in range(1, len(myList)):
        itemToInsert = myList[firstUnsortedIndex]
        testIndex = firstUnsortedIndex - 1
        while testIndex >= 0 and myList[testIndex] > itemToInsert:
            myList[testIndex+1] = myList[testIndex]
            testIndex = testIndex - 1
        myList[testIndex + 1] = itemToInsert

def selectionSort(aList):
    for lastUnsortedIndex in range(len(aList)-1, 0, -1):
        maxIndex = 0
        for testIndex in range(1, lastUnsortedIndex+1):
            if aList[testIndex] > aList[maxIndex]:
                maxIndex = testIndex
        # exchange the items at maxIndex and lastUnsortedIndex
        temp = aList[lastUnsortedIndex]
        aList[lastUnsortedIndex] = aList[maxIndex]
        aList[maxIndex] = temp
```

<table>
<thead>
<tr>
<th>Type of sorting algorithm</th>
<th>Initial Ordering of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Descending</td>
</tr>
<tr>
<td>bubbleSort.py</td>
<td>24.5</td>
</tr>
<tr>
<td>insertionSort.py</td>
<td>14.2</td>
</tr>
<tr>
<td>selectionSort.py</td>
<td>7.3</td>
</tr>
</tbody>
</table>

a) Explain why bubbleSort on a descending list (24.5 s) takes longer than bubbleSort on a random list (16.5 s).

Descending order causes the if-statement condition to always be True, so it always swaps and never stops early. Random order might not always swap and might stop early.

b) Explain why bubbleSort on a descending list (24.5 s) takes longer than insertionSort on a descending list (14.2 s).

Worst case for both: bubble sort compares and swaps down whole unsorted part, and insertion compares and shifts items up down whole sorted part. Thus, same # of comparisons, but each bubble sort swap involves 3 moves, while each insertion sort shift takes only one move.

c) Explain why insertionSort on a descending list (14.2 s) takes longer than selectionSort on a descending list (7.3 s).

Same number of comparisons for both. Selection only does 3 moves (1 swap) to extend the sorted part by one, while insertion sort must shift whole sorted part.
Question 4. In class we developed the following selection sort code which sorts in ascending order (smallest to largest) and builds the sorted part on the right-hand side of the list, i.e.:

```
def selectionSort(aList):
    for lastUnsortedIndex in range(len(aList)-1, 0, -1):
        maxIndex = 0
        for testIndex in range(1, lastUnsortedIndex+1):
            if aList[testIndex] > aList[maxIndex]:
                maxIndex = testIndex
        # exchange the items at maxIndex and lastUnsortedIndex
        temp = aList[lastUnsortedIndex]
        aList[lastUnsortedIndex] = aList[maxIndex]
        aList[maxIndex] = temp
```

(20 points) For this question write a variation of the above selection sort that:
- sorts in **descending order** (largest to smallest)
- builds the sorted part on the left-hand side of the list, i.e.,

```
def selectionSortVariation(myList):
    for firstUnsortedIndex in range(0, len(myList)-1):
        maxIndex = firstUnsortedIndex
        for testIndex in range(firstUnsortedIndex+1, len(myList)):
            if aList[testIndex] > aList[maxIndex]:
                maxIndex = testIndex
        temp = aList[firstUnsortedIndex]
        aList[firstUnsortedIndex] = aList[maxIndex]
        aList[maxIndex] = temp
```

```
Question 5. Recall the quadratic rehashing strategy we discussed for open-address hashing:

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>quadratic probing</td>
<td>Check the square of the attempt-number away for an available slot, i.e.,</td>
</tr>
<tr>
<td></td>
<td>[\text{home address} + ((\text{rehash attempt} #)^2 + (\text{rehash attempt} #))/2 ] % (hash table size), where the hash table size is a power of 2. Integer division is used above</td>
</tr>
</tbody>
</table>

(a) (8 points) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

<table>
<thead>
<tr>
<th>Hash Table with Linear Probing</th>
<th>Hash function</th>
<th>Hash Table with Quad. Probing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Ben Schafer</td>
<td>hash(John Doe) = 7</td>
<td>0 Ben Schafer</td>
</tr>
<tr>
<td>1 Paul Gray</td>
<td>hash(Philip East) = 3</td>
<td>1 Paul Gray</td>
</tr>
<tr>
<td>2 Sarah Diesburg</td>
<td>hash(Mark Fienup) = 6</td>
<td>2 Sarah Diesburg</td>
</tr>
<tr>
<td>3 Philip East</td>
<td>hash(Ben Schafer) = 0</td>
<td>3 Philip East</td>
</tr>
<tr>
<td>4</td>
<td>hash(Paul Gray) = 7</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>hash(Sarah Diesburg) = 6</td>
<td>5</td>
</tr>
<tr>
<td>6 Mark Fienup</td>
<td></td>
<td>6 Mark Fienup</td>
</tr>
<tr>
<td>7 John Doe</td>
<td></td>
<td>7 John Doe</td>
</tr>
</tbody>
</table>

\[7 + \left(\frac{2+1}{2}\right) \% 8 = 2\]

\[6 + \left(\frac{2+1}{2}\right) \% 8 = 1\]

(b) (7 points) What is the purpose of requiring a hash table size that is a power of 2 when using quadratic probing?

So quadratic probing rehashes to every slot in the hash table before repeating.

Question 6. (15 points) Use the below diagram to explain the worst-case big-oh notation of merge sort. Assume “n” items to sort.

\[O(n \log_2 n)\]

(\(n = \frac{\text{values}}{2} = (n-1)\) \text{ all between } \frac{n}{2} \text{ and } (n-1)\)