Data Structures - Test 2

Question 1. (10 points) What is printed by the following program? Output:

```python
def recFn(a, b):
    print(a, b)
    if a < b:
        return a
    elif a == b:
        return a + b
    else:
        return a + recFn(a - 2, b + 1) - b

print("Result = ", recFn(8, 0))
```

(10 points)

Question 2. Write a recursive Python function to calculate a^n (where n is an integer) based on the formulas:

- $a^0 = 1$, for $n = 0$
- $a^1 = a$, for $n = 1$
- $a^n = a^{\frac{n}{2}} a^{\frac{n}{2}}$, for even $n > 1$ (recall we can check for this in Python by $n \% 2 == 0$)
- $a^n = a^{\frac{n-1}{2}} a^{\frac{n-1}{2}} a$, for odd $n > 1$

a) (8 points) Complete the below `powerOf` function

```python
def powerOf(a, n):
```

b) (7 points) For the above recursive `powerOf` function, complete the calling-tree for `powerOf(2, 6)`.

```
powerOf(2, 6)
```

powerOf(2, 3) powerOf(2, 3)

(b) (7 points)

Question 2. For the above recursive `powerOf` function, complete the calling-tree for `powerOf(2, 6)`.

```
powerOf(2, 6)
```

powerOf(2, 3) powerOf(2, 3)

```
```

(c) (5 points) Suggest a way to speedup the above `powerOf` function.

(c) (5 points)
Question 4. Two common rehashing strategies for open-address hashing are linear probing and quadratic probing:

| quadratic probing | Check the square of the attempt-number away for an available slot, i.e., [home address + ((rehash attempt #)^2 + rehash attempt #) / 2] % (hash table size), where the hash table size is a power of 2. Integer division is used above |

a) (10 points) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

Hash Table with Linear Probing

0	Ben Schafer
1	
2	Philip East
3	
4	
5	
6	Mark Fienup
7	John Doe

Hash function

hash(John Doe) = 7
hash(Philip East) = 3
hash(Mark Fienup) = 6
hash(Ben Schafer) = 0
hash(Paul Gray) = 3
hash(Sarah Diesburg) = 3

Hash Table with Quad. Probing

0	Ben Schafer
1	
2	Philip East
3	
4	
5	
6	Mark Fienup
7	John Doe

In lab 7, we inserted the 10000 even values 0, 2, 4, 6, 8, ..., 19996, 19998 is ascending order into various hash tables and then timing searching for the 20000 values 0, 1, 2, 3, 4, 5, ..., 19996, 19997, 19998, 19999. On my office computer the timings for these searches are:

<table>
<thead>
<tr>
<th>Type of Hashing</th>
<th>Timings of 20,000 Searches on Various Hash Table Sizes (Load Factors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open-address with Linear probing</td>
<td>16,384 (0.61)</td>
</tr>
<tr>
<td>Open-address with Quadratic probing</td>
<td>12.19 seconds</td>
</tr>
<tr>
<td>Closed-address with unsorted linked list at each home address (i.e., ChainingDict)</td>
<td>0.575 seconds</td>
</tr>
<tr>
<td>Closed-address with unsorted linked list at each home address (i.e., ChainingDict)</td>
<td>0.128 seconds</td>
</tr>
</tbody>
</table>

b) (8 points) For load factor 0.61, why did the open-address with Linear probing perform much worse than open-address with Quadratic probing?

c) (7 points) For load factors 0.31 and 0.15, why is the closed-address (e.g., ChainingDict) version slower than the open-address versions?
Question 5. (25 points) In class we developed the following selection sort code which sorts in ascending order (smallest to largest) and builds the sorted part on the right-hand side of the list, i.e.:

```python
def selectionSort(aList):
    for lastUnsortedIndex in range(len(aList)-1, 0, -1):
        maxIndex = 0
        for testIndex in range(1, lastUnsortedIndex+1):
            if aList[testIndex] > aList[maxIndex]:
                maxIndex = testIndex
        # exchange the items at maxIndex and lastUnsortedIndex
        temp = aList[lastUnsortedIndex]
        aList[lastUnsortedIndex] = aList[maxIndex]
        aList[maxIndex] = temp
```

For this question write a variation of the above selection sort that:
- sorts in **descending order** (largest to smallest)
- builds the **sorted part on the left-hand side** of the list, i.e.,

```python
def selectionSortVariation(myList):
    # Code implementation...
```

For this question write a variation of the above selection sort code which sorts in descending order (largest to smallest) and builds the sorted part on the left-hand side of the list, i.e.:

```python
def selectionSortVariation(myList):
    # Code implementation...
```
Question 6. (10 points) Use the below diagram to **explain** the worst-case big-oh notation of merge sort. Assume “n” items to sort.

Question 7. (10 points) **Quick sort** general idea is as follows.

- Select a “random” item in the unsorted part as the pivot
- Rearrange (**partitioning**) the unsorted items such that → → →:
 - Quick sort the unsorted part to the left of the pivot
 - Quick sort the unsorted part to the right of the pivot

Explain how quick sort performs O(n²) in the worst-case.