Data Structures (CS :520) Lecture 9 Name:

3. Complete the recursive scrielper function in the __str__ method for our ordereduist class.

def str (self):
"W Returns a string representation of the list with a space between each item. "n©

def strHelper{current):
I‘F Cuﬂ»mf" g M@eﬁg ¢
et e a e
tlse? U e
ety en @%w{ Cwﬁf‘mﬁ(%&/@m» J+ R S%Heée»(@m@ o f{,%;)

i

€
N | ¢ ““’”u""
Htart ~Sre o g te, m" te
return " {head) " + st:rH?_lp?g{(selIf _head) + "(tail)" N @gﬁ%’iu”
L2ed 5 7 ~ (0
4, Some mathe atical conéepls are defining by recursive definitions. One example is the Fibonacci series:
§01§1235813213455$6f : f“j

Afier the seS6Ad number, each number in the series is the sum of the two previous numbers. The Fibonacci series can

be defined recursively as:

Fibo = Q
Fib, =1
FibN = FibN_[+ FibN.z fOl‘ N=2.
a) Complete the recursive function: def flb (n):
if V\ e
\(\e‘{ wem O
el n=v g
e +V - A

|
Ts{l‘w %'Gm)4 ﬂé(n 2)

b) Draw the call tree for fib(5).

)/\‘
&) fgb@\
\ /B
;g%(oy M(:) (o) Fib). @,{g,) ihle)
(‘%%L o\

L) Libb) E

Lecture 9 - Page 3

Data Structures (CS 1520) Lecture 9 Name:

¢) On my office computer, the call to fib(40) takes 22 seconds, the call to fib(41) takes 35 seconds Z(d the call to
933

fib(42) takes 56 seconds. How long would you expect fib(43) to take? (%. [S»
€.
d) How long would you guess calculating fib{100) would take on my office computer? /
7 mu lbn v - (?2) @:‘!)
e) Why do you suppose this recursive fib function is so slow? % e

e (jﬁ}f # épﬁﬂ F / Co ('@fé{ig& -

f) What is the computational complexity? — O(24) é),“p

g) How might we speed up the calculation of the Fibonacci series?
§"{'0f“ﬁ ANSU4r " v “B'\fr‘f“ f’@éz[:;f&}{ tom &
3!’15%“1 f.g;wé vAd #5 se ig’afvf e“?f

5. A VERY POWERFUL concept in Computer Science is dyrantic programming. Dynamic programming solutions
eliminate the redundancy of divide-and-conquer algorithms by calculating the solutions to smaller problems fitst,
storing their answers, and looking up their answers if later needed instead of recalculating them.

We can use a list to store the answers to smaller problems of the Fibonacci sequence.
To transform from the recursive view of the problem to the dynamic programming solution you can do the following
steps:
1) Store the solution to smaliest problems (i.e., the base cases) in a list
2) Loop (no recursion) from the base cases up to the biggest problem of interest. On each iteration of the loop we:
* solve the next bigger problem by looking up the solution to previously solved smaller problem(s)
* store the solution to this next bigger problem for later usage so we never have to recalculate it

a) Complete the dynamic programming code:

def fibin):
"wiDynamic programming solution to find the nth number in the Fibonacci seg.""!
oy
List to hold the solutions to the smaller problems V(
fibonacci = [] [‘ j
Lot -,
Step 1: Store base case solutions f -

fihonaccei,append{ ¢ }
fibonacci.append (l)

Step 2: Loop from base cases to biggest problem of interest
for position in range(2) o 4.()i

fibonacci . append | Fl dﬂﬁCC‘[}oaS' Him « j 'é'w{\ é)(ﬁ)ﬂ'ﬁe’ (t Lpdff*?';ﬂq gj)

return Z) number 1n the Fibonacci sequence
/)

return »F Hﬁ((‘(

Running the above code to calculate fib(100) would only take a fraction of a second.

b) One tradeoff of simple dynamic programming implementations is that they can require more memory since we
store solutions to all smaller problems, Often, we can reduce the amount of storage needed if the next larger problem
(and all the larger problems) don’t really need the solution to the really small problems, but just the larger of the
smaller problems. In fibonacci when calculating the next value in the sequence how many of the previous solutions are

needed? 4, 0
Lecture 9 - Page 4

Data Structures (CS 1520) Lecture 10 Name:

1. Consider the coin-change problem: Given a set of coin types and an amount of change to be returned, determine the
fewest number of coins for this amount of change.

a) What "greedy" algorithm would you use to solve this problem with US coin types of {1, 5, 10, 25, 50} and a change
amount of 29-cents? 29 q
| \

-2 -

.,.:f f O > ot Salery,,
3

S
W*Z~

b) Do you get the correct solution if you use this hlgorithm for coin types of {1, 5, 10, 12, 25, 50} and a change

amount of 29-cents? 2.4 i‘
— 25 SCorn doletion
*‘“" ! it _é gWé@ o« / (4
e Bedr. 3 yyz(;f,cﬂ, /? /? §

2. One way to solve this problem in general is to use a divide-and-conquer algorithm. Recall the idea of
Divide-and-Conguer algorithms.

Solve a problem by:

+ dividing it into smaller problem(s) of the same kind

* solving the smaller problem(s) recursively

* use the solution(s) to the smaller problem(s) to solve the original plobiem

214 $16,00,15, 2,53

ﬂf&/mr

a) For the coin-change problem, what determines the size of the problem? 7

dz‘é”f’ff

24 30,5405 21e 25 508

b) How could we divide the coin-change problem for 29-cents into smaller p1oblems'7

¢) If' we knew the solution to these smaller problems, how would be able to solve the original problem?

Lecture 10 - Page 1

Data Structures (CS 1520) Lecture 10 Name:

3. After we give back the first coin, which smaller amounts of change do we have?

Original Problem o P P
g(l 2\'?(o, ,ggég"";g @"g
29 cents ;

24 |
(A (Hcol VUeolq ofmalierproblems, 4 caf'q") |

(ot
4, If we knew the fewest number of coins needed f(;] each possible smaller proble

fewest number of coins needed for the original problem? .
Min A Calrs hﬁf cmalle..
Problesry +)

5. Complete a recursive relationship for the fewest number of coins,

then how could determine the

min(FewestCoins(¢ b4, 6@ ~ € i))+] if change 2 CoinSet

coin € CoinSet and coin < change
AR

9, if change-eJeoitiSet.

2
FewestCoins(change) =

A

6. Complete a couple levels of the recursion tree for 29-cents change using the set of coins {1, 5, 10, 12, 25, 50}.

Original Problem

Lecture 10 - Page 2

