Data Structures Lecture 13 Name;

1. The textbook solves the coin-change problem with the following code (note the “set-builder-like” notation):
{c|c e coinValueList and ¢ < change}

def recMC{change, coinValueList):
global backtrackingNocdes

backtrackingNodes += 1 . .

minCoins - change Results of running this code:

if change in coinValuelList: = .-~ N an

return 1 //”

Change Amount: 63 Coin types: [1, 5, 10, 25]
Run-time: 70.,68% seconds

Fewest number of coins 6

Number of Backtracking Nodes: 67,716,925

else:
for i in {¢ for ¢ in cg;nValuezlst if ¢ <= change]:
numCeins = 1 + recMC(change - i, coinvValuelList)
if numCeoins < minCoins:
minCoins = numCeins
return minCoins

I removed the fancy set-builder notation and replaced it with a siéple if-statement check:

def recMC(change, coinValuelList):
global backtrackingNedes
backtrackingicdes += 1

minCoins = change Results of running this code:
if change in coinValueList:
return 1
else: Change Amount: 63 Coin types: [1, 5, 10, 25]
for i in coinValueLlist: {1 Run-time: 45.815 seconds
if i <= change: Fewest number of coins 6
numCoins = 1 + recMC{change - i, coinValueList) Number of Backtracking Nodes: 67,716,925

if numCoins < minCoins;
miaCoins = numCeins
return minCeins

a) Why is the second version so much “faster?

[
Tt 00(965/1} //]e@O 1% 0, 694 N Q Corn V4 m?j /~//ip7!
dV‘ﬂ L= (‘é’?é?ﬁ‘}.ﬁ 01’“6¢64 G’ft[/ —{-—a e MC
b) Why does it still taicﬁ a long time?

Al does 61 METE vocosive calls b rec MC

2. To speed the recursive backtracking algorithm, we can prune unpromising branches. The general recursive
backtracking algorithm for optimization problems (e.g., fewest number of coins) looks something like:

Backtrack(recursionTreeNode p) {

for each child ¢ of p do # each c represents a possible choice
if promising(c) then # ¢ is "promising” if' it could lead to a better solution
if ¢ is a solution that's better than best then # check if this is the best solution found so far
best=c # remember the best solution
else
Backtrack(c) # follow a branch down the free
end if
end if
end for

} // end Backtrack

General Notes about Backiracking:

* The depth-first nature of backtracking only stores information about the cwrrent branch being explored on the
run-time stack, so the memory usage is “low” eventhough the # of recursion tree nodes might be exponential (27).

* Each node of the search-~space (recursive-cail) tree maintains the state of a partial solution. In general the partial
solution state consists of potentially large arrays that change little between parent and child. To avoid having
multiple copies of these arrays, a reference to a single “global” array can be maintained which js. updated before
we go down to the child (via a recursive call) and undone when we backtrack to the parent., (&<

a) For the coin-change problem, what defines the current state of a search-space tree node?

Corront CA;@47Q Ameund);vjlllf/ (vm,g al'fcﬁ!’)/ f‘(Lflzmrﬂ/(:’/‘%9

Tecture 13 Page 1
Vil ik fsae (1 0.1

Data Structures Lecture 13 Name;
b) When wouzda“chi}d” tree node NOT be promising? j:'{“z W/ 2 4,(We:§f((. 2]&;1(?_;%{ S b/&'.‘/?/’oe,

§g,z}/ 5 tofus solutivn, 40d we have c{hﬂemg}f Ot'rez\ becle H o
arl have a POS{ZW C}?M;a émwfff"b 4'4@/, wWe Canned lm/@?
SR M T AT T L M T PN oW

3. Consi cktracki ¢ with prdning (next page) twice with & change amount of 63
cents.

Change Amount: 63 Coin types: [iI, 5, 10, 25} Change Amount: 63 Coin types: [25, 10, 5, 1]

Run—-time: 0.036 seconds . Run~time: 0.003 seconds

Fewest number of cocins 6 Fewest number of coins 6

The number of each type of coins is: The number of each type of coins is:

number of l-cent coins is 3 number of 25-cent coins is 2

number of 5-cent coins is 0 number of 1i0-cent coins is 1

number of 10-cent ceoins is 1 number of 5-cent coins is 0

number of 25-cent coins is 2 number of l-cent coins is 3

Number of Backtracking Nodes: 4831 Number of Backtracking Nodes: 310

a) Explain why ordering the coins from largest to smallest produced faster results. ’
The [1,5,00,250 verypoa'c Tirst solotivn f.ud wifl be &3
peantes yhich (s not deq he lpll for prenrng, Thetrsi0.8)

Vorsion's ergd gol fdon Tovad will be our 96‘@&5}’ solete, (25,25,
L) SiX ot Sole b w7l 1y best /
b) For coins of [50, 25, 12, 10, 5, 1] typical timings: '

Change Amount Run-Time (seconds) Number of Tree Nodes
399 8.88 2,015,539
409 55.17 ‘ 12,093,221
419 318.56 72,558,646

Why the exponential growth in run-time?

4. As with Fibonacci, the coin-change problem can benefit from dynamic program since it was slow due to solving
the same problems over-and-over again. Recall the general idea of dynamic programming:

e Solve smaller problems before larger ones

¢ store their answers

* look-up answers to smaller problems when solving larger subproblems, so each problem is solved only once

a) To solve the coin-change problem using dynamic programming, we need to answer the questions:

244 1,5, (0,14, 25,503

* What is the smallest problem? [‘
CD ¢ ¢Q/437 ¢ a

* Where do we store the answers to the smaller problems? ‘])’{;)
{

N————

Lecture 13 Page 2

Data Structures Lecture 13

Name:

backtrackingNedes = 0 # profiling variable to track number of state-space tree nodes

def solveCoinChange (changeamt, coinTypes):

def backtrack(changeamt, numberOfEachCoinType, numberOfCoinsSoFar, solutionFound, bestFewestCoins,

glebal backtrackingNodes
Umnwnnmnwunmzoamm 4= 1

for index in range(len(coinTypes)):
smallerChangeAmt = changedmt - coinTypes(index]

bestNumberOfEachCoinType) :

if promising{smallerChangeAmt, numberOftCoinsScFar+l, solutionFound, bestFewestCoins):

if smallerChangenm
if

0: # a solutiecn is found
(not solutionFound) or numberOfCoinsScFar + 1 < bestFewestCoins:
bestPewestCoins = numberOfCoinsSoFar+l
bestNumberCfEachCoinType = [] + numberOfEachCoinType
bestiumberOfEachCoinType [index] += 1
solutionFound = True
else:
call child with updated state information
smallerChangeimtNumberOfEachCoinType = [] + numberOfEachCoinType
smallerChangermtNumberOfEachCoinType [index] += 1

check if its best

solutionFound, bestFewestCoins, bestNumberOfEachCoinType = backtrack (smallerChangeamt, smallerChangeAntNumberOfEachCoinType,

return sclutionFound, bestFewestCoins, bestiumberOfEachCoinType
end def backtrack

def promising(changefmt, numberCfCoinsReturned, solutionFound, bestFewestCoins):
if changedmt < 0O:
return False
elif changedmt == (Q:
return True
else: # changeimt > 0
if soluticnFound and numberOfCoinsketurned+l >= bestPFewestCoins:
return False
else:
return True

¥ Body of solveCoinChange
numberQfBachCoinType = [)
nunber0fCoinsSoFar = 0
solutionFound = False
bestFewestCoing = -1
bestNumberOfEachCoinType =

set-up initial "current state" information

Nene

numberOfEachCoinType = []

for ceoin in coinTypes:
nunberCfEachCoinType . append (0}

numberOfCoinsSoFar = 0

solutionFound = False

bestFewestCeoinsg = -1

bestNumberOfEachCoinType = None

numberOiCoins$oFar + 1, solutionFound, bestFewestCoins,
bestNumberOfEachCoinType)

solutionFound, bestFewestCoins, bestNumberOfEachCoinType = backtrack(changedmt, numberCfBachCoinType, numberQfCeinsSoFar, solutionFound,

return bestFewestCoins, bestNumberOfEachCoinType

bestFewestCoins, bestNumberOfEachCoinType)

T eotiire 17 Paoe

~
4

Data Structures Lecture 13 Name:

Dynamic Programming Coin-change Algorithm:

L. Fills an array fewestCoins from 0 to the amount of change. An element of fewestCoins stores the fewest number
of coins necessary for the amount of change corresponding to its index value.

For 29-cents using the set of coin types {1, 5, 10, 12, 25, 50}, the dynamic programming algorithm would have
previously calculated the fewestCoins for the change amounts of 0, 1, 2, ..., up to 28 cents.

IL If we record the best, first coin to return for each change amount (found in the “minimum” calculation) in an
array bestFirstCoin, then we can easily recover the actual coin types to return.

fewestCoins[29] = minimum(fewestCoins[28], fewestCoins[24], fewestCoins[19],
. Ogﬁ fewestCoins[17], fewestCoins[4])+ 1=2+1=3
oY 1S

a minimum for 29
H’lﬁ_, Ck‘?ﬁé%a \A\” rp‘,,‘mf,, {QP«F -ty }«*r‘ﬁ{,{ given by 5-cent coin
gt s

5T 4

17 19 2 2829,
fewestCoins: |0} 1]]4] 2] (4] 12 [413]
10 Bﬁi
”s | 12 S
0 12 24 9
bestFirstCoin: [0] [12] [12] 5

1212=0 |1 24-12=12 29-5=24

Extract the coins in the solution for 29-cents from bestFirstCoin]29], bestFirstCoin[24], and bestFirstCoin[12]

b) Extend the lists through 32—cel}ts. e e S 7

o N ,

0 1 2345 % 78 9 1011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32

fewestCoins: [0 |1 {2 {3 [4 [1]2[3[afs[t 212323 2 a3 a2 [3]2[3 2 [f2 3[4 [3 [2]35]
3 p Y

e o I Y

01 2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
bestrirstCoin 0 |1 [1 [J1 fs [s Ta [1 {1 [vol4 Tialu Ta Ts Ta Ts [a Tu Tuolx [aol1 uafoshh Ta {4 [5 [T [19)
e e A R

. S, SETE

B

¢) What coins are in the solution for 32-cents? / 0 T/(O .’ Y

Lecture 13 Page 4

Lecture 14 Name:

. 1. Consider the following sequential search (linear search) code:
Textbook’s Listing 5.1

def sequentialSearch{alist, item):
v geguential search of unorder list "n»
pog = 0
found = False

Data Structures

Faster sequential search code

def linearSearch(aligt, target):
nnepeturns the index of target in alist

or -1 if target is not in aList®""

for position in range{len{alist)):

while pos < len{alist) and not found: if target == aList [position] :
if alist[pos] == item: o
found = True return position
‘ return -1

else:
pes = pos+l

return found
a) What is the basic operation of a search? /o / o ; i n o 4@ \,./féfr % et 4o /F } Y {\/}? 9

b) For the following aList value, which target value causes linearsearch to loop the fewest (“best case™)

number of times? s
P be .)
0 1 2 3 4 5 6 71 8 9 10[? & Q <[
B0

alist; [10 |15 [28 {42 {60 {69 {75 |88 | 90 | 93 | 97
¢) For the above aList value, which target value causes linearSearch to loop the most (“worst case”) number of

times?
oty LN
‘ VA e
whore NEdh Hfome i Litg Se-m.ém\ﬂ/

d) For a successful search (i.e., target value in aList), what is the “average™ number of loops?

0('”? fy m>

Textbook’s Listing 5.2

Faster sequential search code

def orderedSequentialsSearch{alist, item):
tur Sequential search of order iist n"n©
pos = @
found = False
stop = False

while pos < len{alist) and not found and not sktop:

if alist{pos] == item:
found = True

else: !

if alistgpos} > item:
stop = True

else:
pos = pos+l

return found

def linearSearchOfSortedbisgt{target, aList):
rurReturns the index position of target in
sorted alList or -1 if target is not in aldsg"""
breakOut = False
for position in range({len{aList)):
if target <= alList[position]:
breakoOut = True
break

if not breakOut:

return -1
elif target == aliat [position]:
return position

else:
return -1

€) The above version of linear search assumes that aList is sorted in ascending order. When would this version
perform better than the original 1inearsearch at the top of the page?

W(L {on 5‘1%&0 Qav’“\ on dome UHSC/CCQJ‘;’]%{ 5%’56?‘&""(:4535*
WAG/\ Ctl'\ﬁ'% EPOS:L o ‘f"éfﬁf"t;” H@f@‘“f

Lecture 14 Page 1

Data Structures Lecture 14 Name:

2. Consider the following binary search code:

Textbook’s Listing 5.3 Faster binary search code
def ?%nainegrch(alist, item) : def binarySearch(target, lyst):
irst =
last = len{alist)-1 nrrReturns the position of the target
found = False item 1if found, or -1 otherwige., n®®
; , left = ¢
while Ffirst<=last and not found: .
midpoint = (first + last)//2 right = len(lyst) - 1
if alist{midpoint] == item: while left <= right:
ol found = True midpoint = (left + right) // 2
se:
if item < alist [midpoint]: if target == lyst [midpoint}:
last = midpoint-1 return midpoint
else: elif target < lyst [midpoint]:

first = midpoint+1 \ \ .
right = midpoint - 1

return found else:
left = midpoint + 1
return -1 /

a) “Trace” binary search to determine the worst-case basic total number of comparisons?

worst-case / ') ,,0('
loop #elements left e right
4 verrayend 0 1 2 C midpoint n-1 target
remaining / - (—
1 "n" 10 100 : d 151
/ - #yff

N QIJ{Q{ el %{9 4 “ﬁgbmt worst
< 7 Ao 200

L, N

b) What is the worst-case big-oh for binary search? O (/
Ewm_..,@_.) gﬁ ff m

e T

¢) What is the best-case big-oh for binary search? 0 [()

d) What is the average-case (expected) big-oh for binary search? O{ /07 \
9
¢

7 (o Qe @
e) If the list size is 1,000,000, then what is the maximun number of ¢ /mp/a;;sons of hst 1tems ona .s"uccessful search?

{(Dﬁr% (}oo C)’()oc) :;

) If the list size is 1,000,000, then how many comparisons would you expect on an unsuccessful search?

e

Lecture 14 Page 2

