
1. The textbook solves the coin-change problem with the following code (note the “set-builder-like” notation):

 {c | c ∈ coinValueList and c ≤ change}

Results of running this code:

Change Amount: 63 Coin types: [1, 5, 10, 25]

Run-time: 70.689 seconds

Fewest number of coins 6

Number of Backtracking Nodes: 67,716,925

I removed the fancy set-builder notation and replaced it with a simple if-statement check:

Results of running this code:

Change Amount: 63 Coin types: [1, 5, 10, 25]

Run-time: 45.815 seconds

Fewest number of coins 6

Number of Backtracking Nodes: 67,716,925

a) Why is the second version so much “faster”?

b) Why does it still take a long time?

2. To speed the recursive backtracking algorithm, we can prune unpromising branches. The general recursive

backtracking algorithm for optimization problems (e.g., fewest number of coins) looks something like:

Backtrack(recursionTreeNode p) {

 for each child c of p do # each c represents a possible choice

if promising(c) then # c is "promising" if it could lead to a better solution

if c is a solution that's better than best then # check if this is the best solution found so far

best = c # remember the best solution

else

Backtrack(c) # follow a branch down the tree

end if

end if

 end for

} // end Backtrack

General Notes about Backtracking:

� The depth-first nature of backtracking only stores information about the current branch being explored on the

run-time stack, so the memory usage is “low” eventhough the # of recursion tree nodes might be exponential (2n).

� Each node of the search-space (recursive-call) tree maintains the state of a partial solution. In general the partial

solution state consists of potentially large arrays that change little between parent and child. To avoid having

multiple copies of these arrays, a reference to a single “global” array can be maintained which is updated before

we go down to the child (via a recursive call) and undone when we backtrack to the parent.

a) For the coin-change problem, what defines the current state of a search-space tree node?

Data Structures Lecture 13 Name:__________________

Lecture 13 Page 1

def recMC(change, coinValueList):

 global backtrackingNodes

 backtrackingNodes += 1

 minCoins = change

 if change in coinValueList:

 return 1

 else:

 for i in [c for c in coinValueList if c <= change]:

 numCoins = 1 + recMC(change - i, coinValueList)

 if numCoins < minCoins:

 minCoins = numCoins

 return minCoins

def recMC(change, coinValueList):

 global backtrackingNodes

 backtrackingNodes += 1

 minCoins = change

 if change in coinValueList:

 return 1

 else:

 for i in coinValueList:
 if i <= change:

 numCoins = 1 + recMC(change - i, coinValueList)

 if numCoins < minCoins:

 minCoins = numCoins

 return minCoins

b) When would a “child” tree node NOT be promising?

3. Consider the output of running the backtracking code with pruning (next page) twice with a change amount of 63

cents.

a) Explain why ordering the coins from largest to smallest produced faster results.

b) For coins of [50, 25, 12, 10, 5, 1] typical timings:

72,558,646318.56419

12,093,22155.17409

2,015,5398.88399

Number of Tree NodesRun-Time (seconds)Change Amount

Why the exponential growth in run-time?

4. As with Fibonacci, the coin-change problem can benefit from dynamic program since it was slow due to solving

the same problems over-and-over again. Recall the general idea of dynamic programming:

• Solve smaller problems before larger ones

• store their answers

• look-up answers to smaller problems when solving larger subproblems, so each problem is solved only once

a) To solve the coin-change problem using dynamic programming, we need to answer the questions:

� What is the smallest problem?

� Where do we store the answers to the smaller problems?

Data Structures Lecture 13 Name:__________________

Lecture 13 Page 2

Change Amount: 63 Coin types: [1, 5, 10, 25]

Run-time: 0.036 seconds

Fewest number of coins 6

The number of each type of coins is:

number of 1-cent coins is 3

number of 5-cent coins is 0

number of 10-cent coins is 1

number of 25-cent coins is 2

Number of Backtracking Nodes: 4831

Change Amount: 63 Coin types: [25, 10, 5, 1]

Run-time: 0.003 seconds

Fewest number of coins 6

The number of each type of coins is:

number of 25-cent coins is 2

number of 10-cent coins is 1

number of 5-cent coins is 0

number of 1-cent coins is 3

Number of Backtracking Nodes: 310

backtrackingNodes = 0 # profiling variable to track number of state-space tree nodes

def solveCoinChange(changeAmt, coinTypes):

 def backtrack(changeAmt, numberOfEachCoinType, numberOfCoinsSoFar, solutionFound, bestFewestCoins, bestNumberOfEachCoinType):

 global backtrackingNodes

 backtrackingNodes += 1

 for index in range(len(coinTypes)):

 smallerChangeAmt = changeAmt - coinTypes[index]

 if promising(smallerChangeAmt, numberOfCoinsSoFar+1, solutionFound, bestFewestCoins):

 if smallerChangeAmt == 0: # a solution is found

 if (not solutionFound) or numberOfCoinsSoFar + 1 < bestFewestCoins: # check if its best

 bestFewestCoins = numberOfCoinsSoFar+1

 bestNumberOfEachCoinType = [] + numberOfEachCoinType

 bestNumberOfEachCoinType[index] += 1

 solutionFound = True

 else:

 # call child with updated state information

 smallerChangeAmtNumberOfEachCoinType = [] + numberOfEachCoinType

 smallerChangeAmtNumberOfEachCoinType[index] += 1

 solutionFound, bestFewestCoins, bestNumberOfEachCoinType = backtrack(smallerChangeAmt, smallerChangeAmtNumberOfEachCoinType,

 numberOfCoinsSoFar + 1, solutionFound, bestFewestCoins,

 bestNumberOfEachCoinType)

 return solutionFound, bestFewestCoins, bestNumberOfEachCoinType

 # end def backtrack

 def promising(changeAmt, numberOfCoinsReturned, solutionFound, bestFewestCoins):

 if changeAmt < 0:

 return False

 elif changeAmt == 0:

 return True

 else: # changeAmt > 0

 if solutionFound and numberOfCoinsReturned+1 >= bestFewestCoins:

 return False

 else:

 return True

 # Body of solveCoinChange

 numberOfEachCoinType = [] # set-up initial "current state" information

 numberOfCoinsSoFar = 0

 solutionFound = False

 bestFewestCoins = -1

 bestNumberOfEachCoinType = None

 numberOfEachCoinType = []

 for coin in coinTypes:

 numberOfEachCoinType.append(0)

 numberOfCoinsSoFar = 0

 solutionFound = False

 bestFewestCoins = -1

 bestNumberOfEachCoinType = None

 solutionFound, bestFewestCoins, bestNumberOfEachCoinType = backtrack(changeAmt, numberOfEachCoinType, numberOfCoinsSoFar, solutionFound,

 bestFewestCoins, bestNumberOfEachCoinType)

 return bestFewestCoins, bestNumberOfEachCoinType

Data Structures Lecture 13 Name:__________________

Lecture 13 Page 3

Dynamic Programming Coin-change Algorithm:

I. Fills an array fewestCoins from 0 to the amount of change. An element of fewestCoins stores the fewest number

of coins necessary for the amount of change corresponding to its index value.

For 29-cents using the set of coin types {1, 5, 10, 12, 25, 50}, the dynamic programming algorithm would have

previously calculated the fewestCoins for the change amounts of 0, 1, 2, ..., up to 28 cents.

II. If we record the best, first coin to return for each change amount (found in the “minimum” calculation) in an

array bestFirstCoin, then we can easily recover the actual coin types to return.

fewestCoins:

2928241917 4

 4 2 4 2 4

5
10

12
25

1

3

bestFirstCoin:
292412

 12 12 5

 0

0

29-5=2424-12=1212-12=0

a minimum for 29
given by 5-cent coin

Extract the coins in the solution for 29-cents from bestFirstCoin[29], bestFirstCoin[24], and bestFirstCoin[12]

fewestCoins[29] = minimum(fewestCoins[28], fewestCoins[24], fewestCoins[19],

fewestCoins[17], fewestCoins[4]) + 1 = 2 + 1 = 3

b) Extend the lists through 32-cents.

0 1 2 3 4 1 2 3 4 5 1 2 1 2 3 2 3 2 3 4 2 3 2 3 2 1 2 3 4 3

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

29

0 11 1 1 5 1 1 1 1 10 1 12 1 1 5 1 5 1 1 10 1 10 1 12 25 1 1 1 5

fewestCoins:

bestFirstCoin:

30

30

31

31

32

32

c) What coins are in the solution for 32-cents?

Data Structures Lecture 13 Name:__________________

Lecture 13 Page 4

